Blog里可以显示公式 :)

行内

  1. Analysis
    • Limit: $\forall\varepsilon>0\exists\delta>0\forall x(0<d(x,c)<\delta\rightarrow d(f(x),L)<\varepsilon)$
      • Continuity: $\forall x\in I\forall\varepsilon>0\exists\delta>0\forall y\in I(d(x,y)<\delta\rightarrow d(f(x),f(y))<\varepsilon)$

行间

\[\sum\limits_{\textcolor{red}{n}=1}^\infty\frac{1}{\textcolor{red}{n}^{\textcolor{green}{s}}}=\prod\limits_{\textcolor{red}{p}\in\mathbb{P}}\frac{1}{1-\frac{1}{\textcolor{red}{p}^{\textcolor{green}{s}}}}\] \[\mathrm{e}^{\mathrm{i}\theta}=\cos\theta+\mathrm{i}\sin\theta\] \[\dfrac{\mathrm{d}}{\mathrm{d}x}\int_{a}^x\!\!f(t)\,\mathrm{d}t=f(x)\] \[P_k(x)=\sum\limits_{n=0}^k\dfrac{f^{(n)}(a)}{n!}(x-a)^n\]

交换图

\begin{tikzcd}
X \times Y^X \ar[r,"\varepsilon"] & Y \ar[dd,"\alpha"] \\
X\times X \ar[u,"1_X\times f"] \ar[ur,"\hat{f}" swap] \\
X \ar[u,"\Delta"] \ar[r,"g" swap] & Y
\end{tikzcd}