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Some Applications of Lawvere’s Fixpoint Theorem

Abstract The famous diagonal argument plays a prominent role in set the-

ory as well as in the proof of undecidability results in computability the-

ory and incompleteness results in metamathematics. Lawvere (1969) brings

to light the common schema among them through a pretty neat fixpoint the-

orem which generalizes the diagonal argument behind Cantor’s theorem and

characterizes self-reference explicitly in category theory. Not until Yanofsky

(2003) rephrases Lawvere’s fixpoint theorem using sets and functions, Law-

vere’s work has been overlooked by logicians. This paper will continue Yanof-

sky’s work, and show more applications of Lawvere’s fixpoint theorem to

demonstrate the ubiquity of the theorem. For example, this paper will use

it to construct uncomputable real number, unnameable real number, partial re-

cursive but not potentially recursive function, Berry paradox, and fast growing

Busy Beaver function. Many interesting lambda fixpoint combinators can also

be fitted into this schema. Both Curry’s Y combinator and Turing’s Θ combi-

nator follow from Lawvere’s theorem, as well as their call-by-value versions.

At last, it can be shown that the lambda calculus version of the fixpoint lemma

also fits Lawvere’s schema.
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1    Introduction

In the late 19th century, Cantor created set theory and discovered that the cardi-
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nality of a powerset P(A) is larger than the cardinality of A, which reveals that

there are many different levels of infinity. Soon after that, the third fundamen-

tal crisis of mathematics was triggered by Russell paradox, which states that

the class of all sets that are not members of themselves cannot be a set. The

1930s saw a series of negative results. Gödel proved that any consistent and

strong enough formal axiomatic system cannot be complete, and no consistent

strong enough formal axiomatic system can prove its own consistency. Tarski

told us that the arithetical truth cannot be defined in arithmetic. Turing showed

that the halting problem is unsolvable and the validity in first order logic is un-

decidable. These negative results shatters both Hilbert’s program and Leibniz’s

great dream about the universal characteristic and rational calculus. It seems

that such kind of paradoxed and theorems have already touched the bound-

ary and limits of human reason. They even excited many great philosophers’

interests. For example, paradoxes and theorems as above are full of deep philo-

sophical implications according to Hofstadter (1979), and the famous diagonal

methods are even involved in the arguments of the limits of artificial intelli-

gence (Penrose 1999), so it is very important to study the common structures

behind them. As is well known, all of the above famous negated results are

related to the liar paradox—“I am lying”—where self-reference occurs. Law-

vere (1969) brings to light the common schema among them through a pretty

neat fixpoint theorem which generalizes the diagonal argument behind Can-

tor’s theorem and characterizes self-reference explicitly in category theory. So

concerning the great philosophical significance of Lawvere’s fixpoint theorem,

it is supposed to speak for itself. However, not until Yanofsky (2003) rephrases

Lawvere’s fixpoint theorem using sets and functions, Lawvere’s paper has been

overlooked by logicians and philosophers. Besides Yanofsky’s examples, we

will show more applications of Lawvere’s fixpoint theorem in this paper to

demonstrate the ubiquity of the abstract schema.

Notation. We assume the reader is familiar with the basics of lambda calculus

and computability theory, which can be found in Odifreddi (1989). We write

�ϕ� for the characteristic function of ϕ. X � Y is an injective map from X to

Y , and X � Y is a surjective map from X to Y , and ( f , g) maps x to ( f (x), g(x)).
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2    Lawvere’s Fixpoint Theorem

Theorem 1 (Lawvere’s Fixpoint Theorem). In any category with finite prod-

ucts, if there is an object T and a morphism f :T × T → Y such that, for every

g:T → Y there is a t: 1 → T for all x: 1 → T: g ◦ x = f ◦ (x, t), then every

endomorphism α:Y → Y has a fixpoint y: 1 → Y such that α ◦ y = y.

Yanofsky directly rephrases Lawvere’s fixpoint theorem using sets and func-

tions as follows.

Theorem 2 (Lawvere’s Fixpoint Theorem—Yanofsky’s Version). If Y is a

set and there exists a set T and a function f :T ×T → Y such that all functions

g:T → Y are representable by f (there exists a t ∈ T such that g(−) = f (−, t))
then all functions α:Y → Y have a fixpoint.

Yanofsky remarks that:

Obviously, every set Y with two or more elements has a function to itself

that does not have a fixed point. It is here that we get in trouble for talking

about sets and functions as opposed to objects in a category and morphisms

between those objects. Perhaps Y and T are sets with extra (algebraic) struc-

ture and functions between them are intended to preserve that extra struc-

ture. In that case, we are really dealing with fewer functions between the

sets. (Yanofsky 2003, 366)

For Yanofsky’s version, due to the limit of the language of sets and functions,

something relevant is missing. But we should not blame set theory for the
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trouble. Any function f : X → ZY corresponds to a function f̂ : X × Y → Z

where f̂ (x, y) = f (x)(y) for x ∈ X and y ∈ Y . Conversely, any function f : X ×
Y → Z corresponds to a function f̂ : X → ZY where f̂ (x)(y) = f (x, y). It is easy

to see that all functions g:T → Y are representable by f :T × T → Y if and

only if there exists f :T � YT . Yanofsky’s version of Lawvere’s theorem 2 can

be equivalently rephrased as “if there exists f : X � YX, then every α:Y → Y

has a fixpoint.” However, we do not need that all functions g:T → Y are

representable by f . We only need all functions of the form g = α ◦ f ◦ (Id, β)

be representable by f . Lawvere’s fixpoint theorem is stronger than Yanofsky’s

version. Lawvere’s fixpoint theorem can be reformulated more general.

Definition 1 (Representability).

A function g: X → Z is representable by f : X×Y → Z if and only if ∃y ∈ Y∀x ∈
X
(
g(x) = f (x, y)

)
.

Theorem 3 (Lawvere’s Fixpoint Theorem). For sets X, Y, Z, and functions

β: X → Y, f : X × Y → Z, α:Z → Z, let g := α ◦ f ◦ (Id, β), assume β is

surjective,

(I) if α has no fixpoint, then g is not representable by f .

(II) if g is representable by f , then α has a fixpoint.

The proof is easy. For (II), if g = α ◦ f ◦ (Id, β) is representable by t, then it

is easy to check that f (β−1(t), t) is a fixpoint of α. And (I) is the contrapositive

of (II).

Since the functions f , g, α are quantified, α is restricted by the prerequisite.

It is not that all functions αmust have a fixpoint, but that all functions α which

can make functions α ◦ f ◦ (Id, β) representable by f must have a fixpoint.

Yanofsky’s version 2 is quite weak, and the above one is more general.
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In the following sections we show some applications of Lawvere’s fixpoint

theorem. Many interesting paradoxes, Cantor’s theorem, fast growing func-

tion, partial recursive but not potentially recursive function, and Turing’s halt-

ing theorem are all consequences of Lawvere’s fixpoint theorem 3-(I), while

many interesting fixpoint theorems, fixpoint lemma and fixpoint combinators

are instances of Lawvere’s fixpoint theorem 3-(II).

3    Applications of Lawvere’s Theorem in Set Theory

Russell-like Paradox. Grelling paradox asks: Is “non-self-descriptive” non-

self-descriptive? By the following graph, we can see that “non-self-descriptive”

is not representable.

where f : (x, y) �→ �y “describes” x
�

and α: x �→ 1 − x.

If we let X := “the universe of all sets,” f : (x, y) �→ �x ∈ y
�
, and α: x �→ 1−x,

then we get the famous Russell paradox. The function g(x) = �x � x� can be

represented by the Russell “set” R := {x: x � x} if it exists, namely, for all

x: g(x) = f (x,R). According to Lawvere’s theorem, α has a fixpoint, and

f (R,R) is its fixpoint, which leads to the contradiction.

The Barber paradox is an applied version of Russell paradox. If we let

X :=“men in the village,” f : (x, y) �→ �y “shaves” x�, and α: x �→ 1 − x,

then we get the Barber paradox.

Generally, let S ⊂ X × X. The relation S may be read as “shave” or “mem-

bership” or “describe” or any other binary relation on X. As depicted in Figure

1, let S y := {x: S (x, y)}, and R := {x: x � S x}, then R is not representable by S :

∀x(R � S x).
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where f : (x, y) �→ �S (x, y)� and α: x �→ 1 − x.

Figure 1 Russell-Like Paradox

The liar paradox, Quine paradox and Richardian number are similar.

To prove the set of real numbers is uncountable, Cantor constructed a new

real that does not occur in the assumed representation by the diagonal argu-

ment. It can be reproduced through Lawvere’s theorem as follows.

Theorem 4 (Cantor). R is uncountable.

Proof.

where 10 := {0, 1, 2 . . . , 9}, and f : (m, n) �→ rmn := “the nth digit of the mth real,”

and α: x �→ 9 − x. Suppose f is an enumeration of R, we construct a new real∑
n g(n)10−n which does not occur in the enumeration, therefore R is uncount-

able. �

Since the set of Turing machines is countable, it follows directly that there

exists uncomputable reals—reals that cannot be calculated digit by digit by

any Turing machine. We can also prove it in a constructive way. If we let

f : (m, n) �→ rmn :=

{ the nth digit output by the mth Turing machine

0 if the mth Turing machine never outputs a nth digit,
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then the real
∑

n g(n)10−n would diagonalize over all the computable reals and

immediately yield an uncomputable real.

As is well known Richard’s paradox has something to do with Cantor’s diag-

onal argument. It is not hard to see that Richard’s paradox can be reformulated

in exactly the same way by defining f : (m, n) �→ rmn :=“the nth digit of the real

number named by the mth sentence.”

Not only the cardinality of R is larger than the cardinality of N, but for

any set X, the cardinality of its power set is larger than itself. We can prove

Cantor’s theorem in three different ways, but with the same schema. Three

ways to prove Cantor’s theorem.

Theorem 5 (Cantor’s Theorem).

|X| < |P(X)|

Proof.

where f : (x, y) �→ �x ∈ y� and α: x �→ 1 − x. For any β, α is fixpoint free,

and every g is representable by f , so β is not surjective, in other words, by the

contraposition of Lawvere’s theorem, we get |X| < |P(X)|. �

Proof. Assume h: P(X) � X.
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where f : (x, y) �→ �h(x) ∈ y�, and α: x �→ 1− x. It is not hard to check that g is

representable by y :=
{
h(x): x ⊂ X & h(x) � x

}
. Contradiction! �

Proof. If |X| � |P(X)|, then there exists some X-enumeration {S i}i∈X of P(X).

where f : (x, y) �→ �x ∈ S y� and α: x �→ 1 − x. Then g(x) = �x � S x�. Since

{S i}i∈X is the enumeration of P(X), the set R := {x: x � S x} that g characterizes

must be some S t: ∃t(R = S t). It means g is representable by t. Contradiction!

�

From the last proof, we see just the same structure as Russell paradox (Fig-

ure 1). It shows that there are many different levels of infinity. With Cantor’s

theorem, a even more amazing result is not hard to prove: the “set” of all

distinct levels of infinity is so large that it cannot even be called a set!

We have proved Cantor’s theorem in three different ways, using three dif-

ferent commuting graphs, but with the same Lawvere schema. All of them

involve the “diagonalization” process (Id, Id), the “evaluation” process f and

the “negation” process α.

Actually, Lawvere’s theorem is a reformulation of the diagonalization trick

that is at the heart of Cantor’s theorem. Since |P(X)| = |2X |, Cantor’s theorem

says |X| < |2X |.

Theorem 6 (Cantor). For |Y | � 2,

|X| < |YX |
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Proof.

where α is the cyclic permutation. Since every g: X → Y is representable by

some f : X×X → Y if and only if there exists f : X � YX, the unrepresentability

of g implies that there is no surjective map from X to YX. �

We know that Yanofsky’s version of Lawvere’s theorem 2 can be rephrased

as “if there exists f : X � YX, then every α:Y → Y has a fixpoint.” However, as

Yanofsky remarks, this version of Lawvere’s theorem falls in trouble. Cantor’s

theorem shows that X is never big enough to represent all the maps X → Y by

some f : X × X → Y , so the premise X � YX is always false when |Y | � 2,

and false premise implies everything. In this sense it seems that Lawvere’s

theorem is a trivial. However, we only need g of the form α ◦ f ◦ (Id, β) to be

representable by f rather than X � YX, so Lawvere’s theorem is stronger than

Yanofsky’s version.

Even if the above version of Lawvere’s fixpoint theorem has nontrivial appli-

cations. For example, most spaces admit fixpoint free function, then it follows

that, for most spaces, there is no space-filling curve for its path space. Since

a continuous function on R is determined by its values at rational points, the

set C(R,R) of continuous functions from R to R has the same cardinality as

R. But is there a continuous surjection R � C(R,R) from the real line to

the Banach space of continuous real functions, equipped with the sup-norm

‖ f ‖∞ = sup
x∈R
| f (x)|?

α
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where F : (x, f ) �→ f (x) and α: x �→ x + 1. The negative answer follows from

Lawvere’s theorem because α is continuous and has no fixpoint.

4    Applications of Lawvere’s Theorem in Computability
      Theory

In the following we show some applications of Lawvere’s theorem in com-

putability theory.

Theorem 7 . There exists total recursive but not primitive recursive func-

tions.

Proof.
f

where f : (m, n) �→ ψn(m), and α: x �→ x + 1. Then g(n) = ψn(n) + 1. The

function f is an enumeration of all the primitive recursive functions. It is total

recursive but not primitive recursive. Since α is fixpoint free, if f is total

primitive recursive, then g is also total primitive recursive, but g diagonalizes

all of the primitive recursive functions and is not representable by f . �

Although f is not primitive, it is total recursive. The set of primitive re-

cursive functions can be effectively enumerated. But is there any effective

enumeration of the total recursive functions? The answer is negative. Since if

there exists such an enumeration f , then a counterexample g can be constructed

in the same way as above to transcend the predetermined enumeration.

If we want a total recursive but not primitive recursive function which can

dominate all of the primitive recursive functions, we can let f : (m, n) �→ max
k�n

ψk

(m). Then g(m) = max
k�m

ψk(m) + 1. Obviously, g is not representable, and for

any n, the inequality g(m) > ψn(m) holds for all but finitely many m.
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In the above argument, we construct some counterexample that diagonal-

izes the presupposed enumeration. Similarly, we can define a busy beaver

function that dominates all of the partial recursive functions. Let f : (m, n) �→
max
k�n

ϕk(m). Then g(m) = max
k�m

ϕk(m) + 1 = max {n: K(n|m) � m} + 1, where

K(n|m) := μe[ϕe(m) = n], and K(n) := K(n|0). Since α is fixpoint free, the

function g is unrepresentable. Because for any n, K(ϕn(m)|m) = K(ϕn) < m,

we can see that g(m) > ϕn(m) for almost all m. Usually the busy beaver func-

tion is defined by BB(m) := max{ϕk(0): k � m} = max{n: K(n) � m}. Now

similar to BB, the function g is also a busy beaver function that dominates all

of the partial recursive functions.

Since the Berry paradox has something to do with the busy beaver func-

tion, we can use the Berry paradox to diagonalize all of the partial recursive

functions.

where Eϕ: (m, n) �→ ϕn(m), and α:ϕn(m) �→ min
(
N \ {ϕk(m): k � n} ). Obvi-

ously, α is fixpoint free, and g(m) = min
(
N\{ϕk(m): k � m} ) = μn [K(n|m) > m].

Intuitively, the function g is a characterization of Berry paradox—“the least

number undefinable in fewer than ten words.” The number g(m) is the least

one that cannot be computed with programs whose code is not larger than m,

even given m as input. And g can be seen as sort of counterpart of the busy

beaver function. Since α is fixpoint free, the function g is unrepresentable.

It follows that g is uncomputable. It also implies the uncomputability of the

function K, otherwise, g would be computable.

In the following we show that not every partial recursive function is poten-

tially recursive.

Definition 2 . The function f̄ is a completion of a partial function f if f̄
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is total and ∀n: f (n) ↓ ⇒ f (n) = f̄ (n). A partial function f is potentially

recursive if it has a completion which is recursive.

Theorem 8 . Not every partial recursive function is potentially recursive.

Proof.

where Eϕ: (m, n) �→ ϕn(m), and α: x �→ x + 1. Then g(m) = ϕm(m) + 1.

Obviously, g partial recursive ⇒ g representable ⇒ α(g(�g�)) = g(�g�),

but α is fixpoint free, so g(�g�) ↑. Now we show that for any partial recursive

ḡ ⊃ g: ḡ(�ḡ�) ↑.

ḡ(�ḡ�) = ϕ�ḡ�(�ḡ�) = g(�ḡ�) = ϕ�ḡ�(�ḡ�) + 1. Contradiction! �

The unsolvability of Turing’s halting problem also follows from Lawvere’s

fixpoint theorem.

Theorem 9 (Turing). The Halting problem is unsolvable.

Proof.
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where H: (x, y) �→
�
ϕy(x) ↓

�
, and α(x) =

{ 1 if x = 0

↑ otherwise
is fixpoint free. If

H is recursive, then the function g constructed as above is partial recursive.

Hence g = ϕt for some t. It is not hard to see that H(t, t) ↑. �

The above proof is formalized in Yanofsky (2003). Here we give another

proof of theorem 9 that can also be fitted into the schema of Lawvere’s theo-

rem.

Proof.

where Eϕ: (m, n) �→ ϕn(m), and α:ϕn(m) �→ 1 +
n∑

k=0
H(m, k) · ϕk(m). If H is

total recursive, then the function g constructed as above is also total recursive.

Since α is fixpoint free, g is unrepresentable. But it means g is uncomputable.

Contradiction! �

Fixpoint. Lawvere’s fixpoint theorem 3-(II) also has many interesting appli-

cations. Kleene’s fixpoint theorem, fixpoint lemma in logic, and many impor-

tant fixpoint combinators in lambda calculus all follow from Lawvere’s fix-

point theorem 3-(II).

Yanofsky (2003) shows how to fit Kleene’s fixpoint theorem and fixpoint

lemma into Lawvere’s schema. In order to make comparison, we copy the two

results as follows, and prove some new consequences of Lawvere’s theorem in

the next section. All of them are of the same schema.

Theorem 10 (Kleene’s Fixpoint Theorem). Given a total recursive function

h, there is an e ∈ N s.t.

ϕe = ϕh(e)



Some Applications of Lawvere’s Fixpoint Theorem 503

Proof.

where f : (m, n) �→ ϕϕn(m), and Eh:ϕn �→ ϕh(n). The function g =
(
ϕh(ϕn(n))

)
n∈N

is a recursive sequence of partial recursive functions, and thus is representable

by f . Then a fixpoint for Eh exists, and we can explicitly construct it: g(m) =

ϕh(ϕm(m)) = ϕs(m) = ϕϕt(m) = f (m, t). Obviously, e := ϕt(t) is the fixpoint. �

By Kleene’s fixpoint theorem, von Neumann’s self-reproducing machine

and totally introspective program can be constructed.

Theorem 11 (Fixpoint Lemma). Let Q be Robinson arithmetic. For any for-

mula α(x) with just one free variable x, there exists a sentence β s.t.

Q � β↔ α (�β�)

Proof.

where Lin1 is the set of formulas with only one free variable, and Lin0 is

the set of sentences. The function f : (ϕ(x), ψ(x)) �→ ψ (�ϕ(x)�), and Eα:ϕ �→
α(�ϕ�). Then g(ϕ(x)) = α (�ϕ (�ϕ(x)�)�). If we let γ(x) ≡ α (D(x)), where

D: �ϕ(x)� �→ �ϕ (�ϕ(x)�)�, then β ≡ γ (�γ(x)�) is the fixpoint. �

Although Gödel’s first incompleteness theorem can be proven in various

ways, for example, it could be proven from the Berry paradox, or from the busy



504 LI Xi

beaver functions, or from Kleene’s normal form theorem and the existence of

partial recursive but not potentially recursive function 8, or from the unsolv-

ability of Turing’s halting problem 9. However, the fixpoint lemma 11 plays a

central role in the proof of most of the incompleteness results. Gödel’s first in-

completeness theorem, Gödel-Rosser’s incompleteness theorem, Tarski’s un-

definability of truth theorem, Löb’s Theorem, Parikh’s theorem all follow from

the fixpoint lemma. It seems that the construction of the fixpoint in the fixpoint

lemma is more complicated than the fixpoint in Kleene’s fixpoint theorem at

the first sight. But if we compare the total recursive function h in Kleene’s

theorem with the formula α in fixpoint lemma, and compare the application

function f in Kleene’s theorem with the application function f in fixpoint

lemma, we can find similar construction processes. We show that the very

same process also gives us a fixpoint combinator in lambda calculus—Curry’s

Y combinator.

5    Applications of Lawvere’s Theorem in Lambda Calculus

Assume Λ is the set of lambda terms.

where f : (x, y) �→ yx, and Ey: x �→ yx. Then

g = λx.y(xx).

By applying g to itself we then have a fixpoint of y

gg = y(gg).

We can abstract y from g and obtain the Y combinator

Y := λy.gg = λy.(λx.y(xx))(λx.y(xx)).
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By applying Y to any term ϕ we get

Yϕ = ϕ(Yϕ) = ϕ(ϕ(Yϕ)) = · · ·

Actually, Kleene’s fixpoint theorem10 follows from the call-by-value ver-

sion of Y combinator—the Z combinator, which also fits Lawvere’s schema.

where f : (x, y) �→ λv.yxv, and Ey: x �→ yx. Then

g = λx.y(λv.xxv).

Just like the Y combinator, we can define

Z := λy.gg = λy.(λx.y(λv.xxv))(λx.y(λv.xxv)).

By applying the Z combinator to h we get

Zhv = h(Zh)v.

If we let e := Zh then we obtain the lambda calculus version of the Kleene’s

fixpoint theorem 10 ev = hev.

Not only the Y, Z combinator follows from Lawvere’s theorem, so does Tur-

ing’s Θ combinator, as well as the call-by-value Θv combinator.
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where f : (x, y) �→ yx, and α: x �→ λy.y(xy). Then

g = λxy.y(xxy).

We can define the Θ combinator as follows

Θ := gg = (λxy.y(xxy))(λxy.y(xxy)).

It can be used just like the Y combinator.

Θϕ = ϕ(Θϕ) = ϕ(ϕ(Θϕ)) = · · ·

Now we prove that the call-by-value Θv combinator also follows from Law-

vere’s fixpoint theorem.

where f : (x, y) �→ yx, and α: x �→ λy.y(λz.xyz). Then

g = λxy.y(λz.xxyz).

The call-by-value Θv combinator can be defined as

Θv := gg = (λxy.y(λz.xxyz))(λxy.y(λz.xxyz)).

And it works just like the Z combinator

Θvhv = h(Θvh)v.

So the Θv combinator can also be used to prove the lambda calculus version of

the Kleene’s fixpoint theorem if we let e := Θvh.

At last, let is prove the lambda calculus version of the fixpoint lemma 11.
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Theorem 12 (Fixpoint Lemma—Lambda Calculus Version). For every λ-term

F there is a λ-term X s.t.

F�X� = X.

Proof.

where Λ := {�M�: M ∈ Λ}, and A: (�M�, �N�) �→ N (�M�), and EF : M �→
F�M�.

G�M� = F�M�M��.

Then X := G�G� is the fixpoint. �

6    Conclusion

Lawvere’s fixpoint theorem is a generalization of the diagonal method which

is widely used in the construction of paradoxes—such as the liar paradox,

Grelling paradox, Russell paradox, Barber paradox, Richard paradox, and in

the proof of many important theorems in set theory and computability theory—

such as Cantor’s theorem, Gödel’s first incompleteness theorem, Gödel-Rosser’s

incompleteness theorem, Tarski’s undefinability of truth theorem, Löb’s theo-

rem, Parikh’s theorem, Kleene’s fixpoint theorem, Turing’s halting theorem,

Rice’s theorem, von Neumann’s self-reproducing automata, and totally intro-

spective program. In this paper, we express Lawvere’s theorem using sets and

functions more general than Yanofsky’s version, and show more applications

of it to demonstrate the ubiquity of the theorem. For example, we use it to

construct uncomputable real number, unnameable real number, partial recur-

sive but not potentially recursive function, Berry paradox, and fast growing
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functions that diagonalize the class of primitive recursive functions and partial

recursive functions. Many interesting lambda fixpoint combinators can also be

fitted into this schema. Both Curry’s Y combinator and Turing’s Θ combinator

follow from Lawvere’s theorem, as well as their call-by-value versions—the Z

combinator and Θv combinator, from which Kleene’s fixpoint theorem can be

seen as a corollary. At last, we show that the lambda calculus version of the

fixpoint lemma also fits Lawvere’s schema.

As shown in Table 1, compare the Y combinator with the lambda calcu-

lus version of fixpoint lemma, the logic version of fixpoint lemma, Kleene’s

fixpoint theorem and Russell paradox, we can see the similarity between one

another.

Table 1 Fixpoint and Diagonalization

Y combinator =̂ Fixpoint 12 =̂ Fixpoint 11 =̂ Fixpoint 10 =̂ Russell Paradox

yx =̂ N (�M�) =̂ ψ(�ϕ(x)�) =̂ ϕn(m) =̂ x ∈ y

xx =̂ M (�M�) =̂ ϕ(�ϕ(x)�) =̂ ϕn(n) =̂ x ∈ x

y(xx) =̂ F�M�M�� =̂ α(�ϕ(�ϕ(x)�)�) =̂ h(ϕn(n)) =̂ x � x

λx.y(xx) =̂ G =̂ γ(x) =̂ ϕt(n) =̂ x � R

(λx.y(xx))(λx.y(xx)) =̂ G (�G�) =̂ γ(�γ(x)�) =̂ ϕt(t) =̂ R � R

Review Lawvere’s fixpoint theorem 3, except that Yanofsky’s version is

weaker, theorem 3-(I) corresponds to Cantor’s theorem in Yanofsky (2003,

366), while theorem 3-(II) corresponds to diagonal theorem in Yanofsky (2003,

377). The map (Id, β) generalizes (Id, Id), and it formally characterizes “di-

agonalization.” Z can be seen as the set of “truth values,” and f is kind of

“evaluation” or “application” function, so f (t, t) can be read that t is an evalua-

tion of itself. The essence of the diagonal method is the fact of using one item

t on two different levels—the object-level X and the meta-level Y . The meta-

level Y is the instrument that we can use to represent all the maps (properties)

X → Z with f : X × Y → Z.

On one hand, if g is representable by f (−, t), then g(β−1(t)) is indirect self-

application, and f (β−1(t), t) is a fixpoint of α. With fixpoint, the system has

kind of “self-reflexivity.” The fixpoint f (β−1(t), t) says that—“I have the prop-

erty α.” For example, in Tarski’s undefinability of truth theorem, its fixpoint
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says “I am not true”; in Gödel’s first incompleteness theorem, its fixpoint says

“I am not provable”; in Gödel-Rosser’s incompleteness theorem, its fixpoint

says “for every proof of me, there is a shorter proof of my negation”; in Löb’s

theorem, its fixpoint says “if I am provable, then ϕ” for any sentence ϕ. And

this fixpoint is related to Curry’s paradox: “if this sentence is true, then Santa

Claus exists”; in Parikh’s theorem, its fixpoint says “I have no proof of myself

shorter than n.”

On the other hand, if α—the generalization of “negation”—has no fixpoint,

then f (β−1(t), t) is “illegitimate,” which means we construct some new item

g(β−1(t)) by “negation” and self-reference that “transcends” the predetermined

list represented by Y . The existence of uncomputable real number, unnameable

real number, partial recursive but not potentially recursive function, and fast

growing Busy Beaver functions are instances of such kind of construction.

Perhaps both “self-reflexivity” and “self-transcendence” would play central

roles in the philosophy of mind or in the design of artificial intelligence. Thanks

to Lawvere’s fixpoint theorem, we not only see the ubiquity of the diagonal-

ization schema and the profound analogies between different theorems, proofs

and paradoxes, but also see the deep trade-off between “self-reflexivity” and

“self-transcendence.”

Future Research. Yanofsky hopes that Ackermann function, Paris-Harring-

ton theorem, Kripke’s truth theory, Brouwer’s fixpoint theorem, Nash’s equi-

librium theorem, Tarski’s fixpoint theorem, and Chaitin’s incompleteness theo-

rem, Gödel’s second incompleteness theorem, and even Gödel’s completeness

theorem can be fitted into Lawvere’s schema, but it seems quite difficult to

fit them all in the same schema nontrivially, because the proof techniques of

them are quite different (Yanofsky 2003, 383). However, the incompressibility

method is at the heart of all Chaitin-like incompleteness theorems, is there a

way to generalize the incompressibility method as succinct as Lawvere’s fix-

point theorem?
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Hofstadter, Douglas. 1979. Gödel, Escher, Bach: An Eternal Golden Braid. New

York: Basic Books.

Lawvere, William. 1969. “Diagonal Arguments and Cartesian Closed Categories.”

Category Theory, Homology Theory and Their Applications II: 134–45.

Odifreddi, Piergiorgio. 1989. Classical Recursion Theory: The Theory of Functions

and Sets of Natural Numbers. Amsterdam: Elsevier.

Penrose, Roger. 1999. The Emperor’s New Mind: Concerning Computers, Minds,

and the Laws of Physics. Oxford: Oxford University Press.

Yanofsky, Noson. 2003. “A Universal Approach to Self-Referential Paradoxes, In-

completeness and Fixed Points.” Bulletin of Symbolic Logic 9.3: 362–86.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


