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Abstract. In 1950s, Carnap develops inductive logic to express the degree of confirmation
of some hypothesis relative to some evidence. In 1960s, Somlomonoff invents the universal
induction method to make prediction. In this paper we integrate the two methods to extent
universal induction’s expressive power and to enhance inductive logic’s predictive power. We
introduce Solomonoff prior into inductive logic, and prove the monadic first order logic version
of Solomonoff completeness theorem. Then we make some comparison of the two quite differ-
ent induction methods in the framework of the modified “inductive logic”. As is well known,
Carnap’s λ-continuum fails to confirm universal generalizations. However, in the modified “in-
ductive logic”, the proposition “all ravens are black” can be confirmed in any computable world
as long as all ravens are really black in that world. If we want to prove the completeness theorem
by the method of Solomonoff’s universal induction, we have to keep the complete information
of the past history in memory. In the modified “inductive logic”, we can neglect all of the irrel-
evant information to concentrate only on some specific pattern, and prove similar convergence
results. Even without complete record of relevant information of the specific pattern, we can
still build our belief through random sampling.

Background In early 20th century, Keynes tries to assign to inductive generaliza-
tions, according to available evidence, probabilities that should converge to 1 as the
generalizations are supported by more and more independent events.

In 1950s, Carnap develops the antecedent of themodern inductive logic, in which
he tries to use logic to distinguish alternative states of affairs that can be expressed
in a given formal language, then define inductive probabilities for sentences by tak-
ing advantage of symmetry assumptions concerning such states of affairs. ([1]) In a
deductively valid argument, the conclusion is true in every possible world in which
the premises are true; while in a good inductive argument, the conclusion can be false
in some possible world, but the set of worlds in which the premises are true and the
conclusion false should be “small” enough that we can say that the premises confirm
the conclusion in some sense.

In 1960s, inspired by Carnap, Solomonoff formalizes Occam’s Razor by means
of algorithmic information theory, and uses it to construct a universal Bayesian prior
for sequence prediction. ([9]) Rathmanner and Hutter give a philosophical analysis of
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Solomonoff’s universal induction, and claim that “all ravens are black” can be con-
firmed in the framework of Solomonoff’s universal induction if we interpret “black
ravens” and “non-black ravens” as a sequence of digits. ([8])

Contribution and Structure of the paper We can’t make induction/prediction
without taking causality into consideration. Solomonoff formalizes causality with
computable functions. If we want to extend Solomonoff’s universal induction’s ex-
pressive power and Carnap’s inductive logic’s predictive power, we have to combine
them together.

We introduce Solomonoff prior into inductive logic to take advantage of its pre-
dictive power and extend its expressive power. In the following, we first give a brief
introduction to Carnap’s inductive logic, and then we introduce Solomonoff prior
into inductive logic. After that, We prove the monadic first order logic version of
Solomonoff’s convergence theorem and make some comparison of the two quite dif-
ferent induction methods in the framework of the modified “inductive logic”. As is
well known, Carnap’s λ-continuum fails to confirm universal generalizations. How-
ever, in the modified “inductive logic”, “all ravens are black” can be confirmed in
any computable world as long as all ravens are really black in that world. You have to
keep the complete information of the past history in memory to prove the complete-
ness theorem in the method of Solomonoff’s universal induction. In our modified
“inductive logic”, we can neglect all of the irrelevant information to concentrate only
on some specific pattern, and we can still prove similar convergence results. Even
without complete record of relevant information of the specific pattern, we can still
build our belief by random sampling.

1 An Introduction to Carnap’s Inductive Logic

Assume the monadic first order language L contains countable constants C

and m monadic predicates R = {R1, R2, . . . , Rm} with no function symbols nor
equality. The constants C name all the individuals in some Universe though there is
no prior assumption that they necessarily name different individuals.

Notation: f↾X := {(x, y) ∈ f : x ∈ X}, and f−1(X) := {x : f(x) ∈ X}.

Definition 1 (Probability on Sentences) Aprobability on sentences is a non-negative
function w : S → [0, 1] such that

P1. |= ψ =⇒ w(ψ) = 1

P2. ψ1 |= ¬ψ2 =⇒ w(ψ1 ∨ ψ2) = w(ψ1) + w(ψ2)

P3. w(∃xψ(x)) = lim
n→∞

w

(
n∨
i=1

ψ(ai)

)
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Theorem 1 (Extension Theorem) Suppose w : SQF → [0, 1] over quantifier-free
sentences satisfies P1, P2, then w has an unique extension to w+ : S → [0, 1] satis-
fying P1, P2, P3.

Let Qi ≡
m∧
j=1

±Rj for 1 ≤ i ≤ 2m =: r, where ±R means one of {R,¬R},

then Q = {Q1, · · · , Qr} is a r-fold classification system of some Universe with
domain C , and every individual in the universe has to satisfy one and only one Q-
predicate that is determined by the state description function h : ai 7→ Qhi . The state

description of a⃗ = (a1, . . . , an) is Θ(⃗a) ≡
n∧
i=1

Qhi(ai). The set of state descriptions

of a⃗ isHa⃗ := {Θ(⃗a) : h : {1, . . . , n} → {1, . . . , r}}.
Sometimes we write ni := |h↾{1,...,n}−1

(i)| to denote the number of times that

event Qi occurs in n trials
n∧
j=1

Qhj (aj). Carnap takes {ni : 1 ≤ i ≤ r} as the

structure description.
Carnap’s aim is to find the right w. Carnap believes that the right w should

satisfy some symmetry principle. For example, it should be invariant under finite
permutations of names.

For any permutation σ of N+,

w(ψ(a1, . . . , an)) = w(ψ(aσ(1), . . . , aσ(n))) (Ex)

For any permutation τ of {1, 2, . . . , r},

w

(
n∧
i=1

Qhi(ai)

)
= w

(
n∧
i=1

Qτ(hi)(ai)

)
(Ax)

Besides the above symmetry principles there is a stronger postulate—sufficientness
postulate, which asserts that there exists a series of functions {fi : 1 ≤ i ≤ r} such
that

w

(
Qj(an+1)

∣∣∣∣ n∧
i=1

Qhi(ai)

)
= fj(nj , n) (SP)

Principle (Ex) asserts that w
(

n∧
i=1

Qhi(ai)

)
depends only on the vector ⟨nhi :

1 ≤ i ≤ n⟩, so that it is independent on the order of observing the individuals, while

in the presence of (Ex), principle (Ax) asserts that w
(

n∧
i=1

Qhi(ai)

)
depends only on

{ni : 1 ≤ i ≤ r}, and w(Qi(a1)) = 1/r for all 1 ≤ i ≤ r.
Considering the principle of indifference—all possibilities that can’t be distin-

guished should be assigned equal probability, there are two intuitive ways to assign
prior probability.
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(A). All state descriptions have equal weight.
(B). All structure descriptions have equal weight.

Given n individuals, there are rn possible state descriptions and
(
n+r−1
r−1

)
possi-

ble structure descriptions.
According to (A),

m†

(
n∧
i=1

Qhi(ai)

)
=

1

rn

and

c†

(
Qj(an+1)

∣∣∣∣ n∧
i=1

Qhi(ai)

)
=

m†
(

n∧
i=1

Qhi(ai) ∧Qj(an+1)

)
m†
(

n∧
i=1

Qhi(ai)

) =
1

r

It is independent of the history
n∧
i=1

Qhi(ai), which means it violates the principle

of learning from experience and hence is unacceptable.
According to (B),

m∗(n1, . . . , nr) =
1(

n+r−1
r−1

)
Since each structure description can be seen as

(
n

n1,...,nr

)
possible state descriptions,

and according to principle (Ex), every possible state description shares equal portion
of its structure description, so we have

m∗

(
n∧
i=1

Qhi(ai)

)
=
m∗(n1, . . . , nr)(

n
n1,...,nr

) =
1(

n+r−1
r−1

)(
n

n1,...,nr

)
which depends only on structure description.

Carnap defines his favorite “degree of confirmation” as

c∗

(
Qj(an+1)

∣∣∣∣ n∧
i=1

Qhi(ai)

)
=

m∗
(

n∧
i=1

Qhi(ai) ∧Qj(an+1)

)
m∗
(

n∧
i=1

Qhi(ai)

) =
nj + 1

n+ r

Carnap’s λ-continuum cλ is a generalization of c∗.
Suppose (Q1, · · · , Qr) are defined so that they have different relative widths γi

such that
r∑
i=1

γi = 1, Carnap’s λ-continuum is

cλ

(
Qj(an+1)

∣∣∣∣ n∧
i=1

Qhi(ai)

)
=
nj + λγj
n+ λ

=
n

n+ λ

nj
n

+
λ

n+ λ
γj
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relative to a free parameter 0 < λ ≤ ∞ which indicates the weight given to logi-
cal or language-dependent factors over and above purely empirical factors (observed
frequencies). The parameter λ serves as an index of caution in singular inductive
inference.

Carnap’s λ-continuum is invariant under the two symmetry principles (Ex) and
(Ax).

The symmetry principles (Ex) and (Ax) says that the temporal order of events is
irrelevant, but in reality, the temporal order is of great significance. Carnap’s degree
of confirmation function is a kind of smoothing method. It approximates frequency
when there are enough data. But the frequency philosophy presupposes an inde-
pendently identical distribution(i.i.d), so it does not work for higher order Markov
Chains. Temporal order can’t be neglected for any “universal” inductive method. If
the temporal order is taken into consideration, the subscript of a should represent the

time stamp, and the conjunction
n∧
i=1

Qhi(ai) indicates the time series of observations

⟨Qh1(a1), . . . , Qhn(an)⟩.

2 Introduction of Solomonoff Prior into Inductive Logic

In 1963, Putnam takes Carnap’s inductive logic as a design for a ‘learning ma-
chine’ —a design for a computing machine that can extrapolate certain kinds of em-
pirical regularities from the data with which it is supplied, and the task of inductive
logic is to construct a ‘universal learning machine’. ([6, 7]) If there is such a thing
as a correct definition of ‘degree of confirmation’ that can be fixed once and for all,
then a machine that predicts in accordance with the degree of confirmation would be
a cleverest possible learning machine. Thus any argument against the existence of a
cleverest possible learning machine must show either that Carnap’s program can’t be
completely fulfilled or that the correct c-function must be one that can’t be computed
by a machine. Either there are better and better c-functions, but no ‘best possible’, or
else there is a ‘best possible’ but it is not computable by a machine.

But, Carnap’s c-function depends on the language, then what is the correct lan-
guage? What is the correct ‘degree of confirmation’? How much evidence is strong
enough to hold our belief?

By choosing the smallest model class that contains the true environment and the
universal (mixture) prior beliefs of the environments that reflect the simplicity cri-
terion, Solomonoff solves the problem. Carnap’s “degree of confirmation” function
can be made better and better, while Solomonoff’s “degree of confirmation” function
is the best but not computable. ([9])

Solonomoff Prior
We assume the reader is familiar with the basics of Kolmogorov Complexity.

Preliminaries can be found in [5] or [3]. Some basic concepts are given below.
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Notation

JϕK := {1 if ϕ is true
0 otherwise

Definition 2 (Kolmogorov Complexity)

K(x|y) := min
p
{|p| : U(⟨p, y⟩) = x}

K(x) := K(x|ϵ)
K(f) := min

p
{|p| : ∀x (U(⟨p, x⟩) ≃ f(x))}

where U is a universal prefix Turing machine, min ∅ = ∞.
For non-string objects o we define K(o) := K(⟨o⟩), where ⟨o⟩ ∈ X ∗ is some

standard code for o.

Definition 3 (Monotone Complexity)

Km(x) := min
p
{|p| : U(p) = x∗} (1)

where U is a universal monotone Turing machine.

LetMU be the set of enumerable semimeasures.
Every specific state description function h determines an unique state description

— an unique universe, in other word, every universe is generated by some program.

We identify h1:n with history
n∧
i=1

Qhi(ai) and identify p with the universe h1:∞ if

U(p) = h1:∞ without confusion.
Generally speaking, our beliefs and hence probabilities are a result of our per-

sonal history. In order to update our beliefs consistently we must first generate the
set of all explanations that may be possible. The actual universe is just one of a
large number of possible universes. Every universe develops in a sequence of pos-
sible states; the probability assigned to each state should be the proportion of the
possible universes in which that state is attained, if we weigh all of the possible uni-
verses equally. Each new observation/measurement eliminates some fraction of the
universes in a given state, depending on how likely or unlikely that state was to actu-
ally produce that observation/measurement; the surviving universes then gain a new
posterior probability distribution, which is related to the prior distribution by Bayes’
formula.

Definition 4 (Universal Probability)

cM

(
n∧
i=1

Qhi(ai)

)
=

∑
p:U(p)=h1:n∗

2−|p|

where U is a universal monotone Turing machine.
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It can be regarded as the limit of the relative frequency of the consistent possible
worlds over all possible worlds:

cM

(
n∧
i=1

Qhi(ai)

)
=
∑
p

2−|p|JU(p) = h1:n∗K

= lim
n→∞

∑
p:|p|≤n

2n−|p|
s

n∧
i=1

Q⟨U(p)⟩i(ai) ≡
n∧
i=1

Qhi(ai)

{
2n

≈ lim
n→∞

∣∣∣∣{p : |p| = n &
n∧
i=1

Q⟨U(p)⟩i(ai) ≡
n∧
i=1

Qhi(ai)

}∣∣∣∣
2n

It means that cM
(

n∧
i=1

Qhi(ai)

)
is the frequentist probability that the program of

a universal monotone Turing machine U generates
n∧
i=1

Qhi(ai) when provided with

uniform random noise (fair coin flips) on the input tape.

probability =
|consistent universes|
|all possible universes|

Just like Carnap’s (A) and (B), we also turn to the principle of indifference for
help. However, we use the principle of indifference on the level of the causes of the
phenomena rather than on the level of the phenomena themselves.

Lemma 1 ([3]) For every ν ∈ MU there exists some monotone Turing machine T
such that

ν

(
n∧
i=1

Qhi(ai)

)
=

∑
p:T (p)=h1:n∗

2−|p| and K(ν)
+
= |⟨T ⟩|

where T (p) = U(⟨T ⟩p).

Lemma 2 For ν ∈ MU ,

cM

(
n∧
i=1

Qhi(ai)

)
+≥ 2−K(ν)ν

(
n∧
i=1

Qhi(ai)

)

Proof

cM

(
n∧
i=1

Qhi(ai)

)
=

∑
p:U(p)=h1:n∗

2−|p|
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≥
∑

q:U(⟨T ⟩q)=h1:n∗

2−|⟨T ⟩q|

= 2−|⟨T ⟩|
∑

q:T (q)=h1:n∗

2−|q|

×=2−K(ν)ν

(
n∧
i=1

Qhi(ai)

)
[Lemma 1]

□

Define

c′M (⊤) := 1

c′M

(
t∧
i=1

Qhi(ai)

)
:= c′M

(
t−1∧
i=1

Qhi(ai)

) cM

(
t∧
i=1

Qhi(ai)

)
∑

1≤k≤r
cM

(
t−1∧
i=1

Qhi(ai) ∧Qk(at)
)

=

cM

(
t∧
i=1

Qhi(ai)

)
cM (⊤)

t∏
i=1

cM

(
i−1∧
j=1

Qhj (aj)

)
∑

1≤k≤r
cM

(
i−1∧
j=1

Qhj (aj) ∧Qk(ai)

)

Obviously, for any state description Θ,Θ′,

(i). c′M (Θ(a1, . . . , an)) ≥ 0

(ii). c′M (⊤) = 1

(iii). c′M (Θ(a1, . . . , an)) =
∑

Θ′(a1,...,an+1)|=Θ(a1,...,an)

c′M (Θ′(a1, . . . , an+1))

For any quantifier-free sentence ψ(⃗a), let

c′M (ψ(⃗a)) :=
∑

Θ(⃗b)|=ψ(a⃗)

c′M

(
Θ(⃗b)

)

where b⃗ is sufficiently large that all of the a⃗ are amongst b⃗, and
∨

Θ(⃗b)|=ψ(a⃗)
Θ(⃗b) is the

full disjunctive normal form of ψ(⃗a).

ψ(⃗a) ≡
∨

Θ(⃗b)|=ψ(a⃗)

Θ(⃗b) (DNF)

It is easy to see, c′M satisfies P1, P2, and according to Theorem (1), c′M has an
unique extension over all of the sentences S of L . Then c′M induces a confirmation



56 Studies in Logic, Vol. 7, No. 4 (2014)

function by the conditional probability

c′M (ψH |ψE) =
c′M (ψE ∧ ψH)

c′M (ψE)

In fact, any w satisfying (i),(ii),(iii) can extend to a probability function on L .
Following the binary digital version of completeness theorem ([3, 9]), we can

prove the following monadic first order version of completeness theorem (2,3). There
will be a finite bound on the number of prediction errors we have to pay out over an
infinite sequence prediction. In other words, given enough computing resources, an
agent will learn to predict very well as long as the universe is computable (2) or it is
generated by some computable measure (3).

Theorem 2 If the universe is deterministic, c′M can predict the future very well with
few errors.

∞∑
t=1

∣∣∣∣∣1− c′M

(
Qht(at)

∣∣∣∣ t−1∧
i=1

Qhi(ai)

)∣∣∣∣∣ ≤ Km(h1:∞) ln 2

Proof
∞∑
t=1

∣∣∣∣∣1− c′M

(
Qht(at)

∣∣∣∣ t−1∧
i=1

Qhi(ai)

)∣∣∣∣∣
(a)

≤ −
∞∑
t=1

ln c′M

(
Qht(at)

∣∣∣∣ t−1∧
i=1

Qhi(ai)

)

= − ln
∞∏
t=1

c′M

(
Qht(at)

∣∣∣∣ t−1∧
i=1

Qhi(ai)

)

= − lim
n→∞

ln c′M

(
n∧
i=1

Qhi(ai)

)

≤ − lim
n→∞

ln cM

(
n∧
i=1

Qhi(ai)

)
≤ Km(h1:∞) ln 2

where
(a)

≤ follows from 1− x+ lnx ≤ 0 for x ∈ [0, 1]. □

Theorem 3 (Completeness Theorem) For histories generated by a computable
stochastic process µ, the following bound holds.

∞∑
l=1

∑
h1:l∈{1,...,r}l

µ

(
l∧

i=1

Qhi(ai)

)
·
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hl+1:t∈{1,...,r}t−l

∣∣∣∣∣c′M
(

t∧
i=l+1

Qhi(ai)

∣∣∣∣ l∧
i=1

Qhi(ai)

)
− µ

(
t∧

i=l+1

Qhi(ai)

∣∣∣∣ l∧
i=1

Qhi(ai)

)∣∣∣∣∣
)2

+≤ 2(t− l)K(µ) ln 2
<∞

Proof

∞∑
l=1

∑
h1:l∈{1,...,r}l

µ

(
l∧

i=1

Qhi(ai)

)
·

( ∑
hl+1:t∈{1,...,r}t−l

∣∣∣∣∣c′M
(

t∧
i=l+1

Qhi(ai)

∣∣∣∣ l∧
i=1

Qhi(ai)

)
− µ

(
t∧

i=l+1

Qhi(ai)

∣∣∣∣ l∧
i=1

Qhi(ai)

)∣∣∣∣∣
)2

(a)

≤ 2

∞∑
l=1

∑
h1:l∈{1,...,r}l

µ

(
l∧

i=1

Qhi(ai)

)
·

∑
hl+1:t∈{1,...,r}t−l

µ

(
t∧

i=l+1

Qhi(ai)

∣∣∣∣ l∧
i=1

Qhi(ai)

)
ln

µ

(
t∧

i=l+1

Qhi(ai)

∣∣∣∣ l∧
i=1

Qhi(ai)

)

c′M

(
t∧

i=l+1

Qhi(ai)

∣∣∣∣ l∧
i=1

Qhi(ai)

)

= 2

∞∑
l=1

∑
h1:t∈{1,...,r}l

µ

(
t∧
i=1

Qhi(ai)

)
t−1∑
m=l

ln
µ

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)
c′M

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)
= 2

∞∑
l=1

t−1∑
m=l

∑
h1:m+1∈{1,...,r}m+1

µ

(
m+1∧
i=1

Qhi(ai)

)
·

( ∑
hm+2:t∈{1,...,r}t−m−1

µ

(
t∧

i=m+2
Qhi(ai)

∣∣∣∣ m+1∧
i=1

Qhi(ai)

))
ln

µ

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)
c′M

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)

≤ 2(t− l)
∞∑
m=1

∑
h1:m+1∈{1,...,r}m+1

µ

(
m+1∧
i=1

Qhi(ai)

)
ln

µ

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)
c′M

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)

= 2(t− l) lim
n→∞

n∑
m=1

∑
h1:m+1∈{1,...,r}m+1

 ∑
hm+2:n∈{1,...,r}n−m−1

µ

(
n∧
i=1

Qhi(ai)

) ·
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ln
µ

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)
c′M

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)

= 2(t− l) lim
n→∞

n∑
m=1

∑
h1:n∈{1,...,r}n

µ

(
n∧
i=1

Qhi(ai)

)
ln

µ

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)
c′M

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)

= 2(t− l) lim
n→∞

∑
h1:n∈{1,...,r}n

µ

(
n∧
i=1

Qhi(ai)

)
n∑

m=1

ln
µ

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)
c′M

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)

= 2(t− l) lim
n→∞

∑
h1:n∈{1,...,r}n

µ

(
n∧
i=1

Qhi(ai)

)
ln

n∏
m=1

µ

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)
c′M

(
Qhm+1(am+1)

∣∣∣∣ m∧
i=1

Qhi(ai)

)

= 2(t− l) lim
n→∞

∑
h1:n∈{1,...,r}n

µ

(
n∧
i=1

Qhi(ai)

)
ln

µ

(
n∧
i=1

Qhi(ai)

)
c′M

(
n∧
i=1

Qhi(ai)

)

≤ 2(t− l) lim
n→∞

∑
h1:n∈{1,...,r}n

µ

(
n∧
i=1

Qhi(ai)

)
ln

µ

(
n∧
i=1

Qhi(ai)

)
cM

(
n∧
i=1

Qhi(ai)

)
+≤ 2(t− l)K(µ) ln 2
<∞

where
(a)

≤ follows from Entropy Inequality (Theorem 3.19-vi, in [3]), and the last
inequality +≤ follows from Lemma (2). □

Compare Carnap’s λ-continuum cλ with c′M . With zero-knowledge (n = 0),
Carnap would use

cλ (Qj(a1)) =
0 + λγj
0 + λ

= γj

to estimate the future, while Solomonoff would prefer

c′M (Qh1(a1)) =
cM (Qh1(a1))∑

1≤j≤r
cM (Qj(a1))
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with sufficient experiences (n large enough), Carnap would use

cλ

(
Qj(an+1)

∣∣∣∣ n∧
i=1

Qhi(ai)

)
=
nj + λγj
n+ λ

≈ nj
n

—the frequency of the phenomena, while Solomonoff would still use

c′M

(
Qj(an+1)

∣∣∣∣ n∧
i=1

Qhi(ai)

)
—the normalization of the frequency of the consistent universes/causes. The fre-
quency of the phenomena does not always converge to the true probability. It depends
on the environment. If the true environment is independent and identically distributed,
c′M can also converge to the limit of frequency according to the completeness theorem
(3). In other words, Carnap would like to know how while Solomonoff would like to
know why.

What’s more? Carnap’s λ-continuum cλ fails to confirm “all ravens are black”
while c′M is qualified as a solution.

3 How to Confirm “All Ravens are Black”?

In our monadic first order language, “All ravens are black” can be expressed by
∀x(R(x) → B(x)).

Since

w(∀xψ(x)) = 1− w(∃x¬ψ(x))

= 1− lim
n→∞

w

(
n∨
i=1

¬ψ(ai)

)

= lim
n→∞

(
1− w

(
n∨
i=1

¬ψ(ai)

))

= lim
n→∞

w

(
n∧
i=1

ψ(ai)

)
Hence, to solve the Raven Paradox, we only have to make sure that

lim
n→∞

w

(
n∧
i=1

(R(ai) → B(ai))

)
> 0

Now we prove the above inequality holds for c′M .

Lemma 3 If there exists a computable universe that contains only black ravens, then
c′M (∀x(R(x) → B(x)) > 0 is true.
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Proof

c′M (∀x(R(x) → B(x))

= lim
n→∞

c′M

(
n∧
i=1

(R(ai) → B(ai))

)

= lim
n→∞

c′M

(
n∧
i=1

(¬R(ai) ∨B(ai))

)

= lim
n→∞

c′M

 2n∨
j=1

(
n∧
i=1

(¬R(ai)/B(ai))

)
j



= lim
n→∞

c′M


∨

n∧
i=1

Qhi
(ai)|=

2n∨
j=1

(
n∧

i=1
(¬R(ai)/B(ai))

)
j

n∧
i=1

Qhi(ai)


= lim

n→∞

∑
n∧

i=1
Qhi

(ai)|=
2n∨
j=1

(
n∧

i=1
(¬R(ai)/B(ai))

)
j

c′M

(
n∧
i=1

Qhi(ai)

)

= lim
n→∞

∑
n∧

i=1
Qhi

(ai)|=
2n∨
j=1

(
n∧

i=1
(¬R(ai)/B(ai))

)
j

cM

(
n∧
i=1

Qhi(ai)

)
cM (⊤)

·

n∏
i=1

cM

(
i−1∧
j=1

Qhj (aj)

)
∑

1≤k≤r
cM

(
i−1∧
j=1

Qhj (aj) ∧Qk(ai)

)

= lim
n→∞

∑
n∧

i=1
Qhi

(ai)|=
2n∨
j=1

(
n∧

i=1
(¬R(ai)/B(ai))

)
j

∑
p:U(p)=h1:n∗

2−|p|

∑
p∈dom(U)

2−|p|

n∏
i=1

∑
p:U(p)=h<i∗

2−|p|

∑
1≤k≤r

∑
p:U(p)=h<ik∗

2−|p|

where ψ1/ψ2 means that we mutual exclusively choose either ψ1 or ψ2.
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Since

∀i :

∑
p:U(p)=h<i∗

2−|p|

∑
1≤k≤r

∑
p:U(p)=h<ik∗

2−|p| ≥ 1

hence, if there exists some computable universe h1:∞ such that

∀n

(
n∧
i=1

Qhi(ai) |=
n∧
i=1

(¬R(ai)/B(ai))

)
then c′M (∀x(R(x) → B(x)) > 0 is true. □

In other words, if all of the ravens in a computable universe are black, c′M can
confirm that “all ravens are black”.

lim
n→∞

c′M

(
∀x(R(x) → B(x))

∣∣∣∣ n∧
i=1

(¬R(ai) ∨B(ai))

)

= lim
n→∞

c′M (∀x(R(x) → B(x))

c′M

(
n∧
i=1

(R(ai) → B(ai))

)
=

c′M (∀x(R(x) → B(x))

lim
n→∞

c′M

(
n∧
i=1

(R(ai) → B(ai))

)
=

c′M (∀x(R(x) → B(x))

c′M (∀x(R(x) → B(x))
[Lemma 3]

= 1

So far we know c′M can confirm “all ravens are black”. On the other hand, as for
Carnap’s λ-continuum, let’s see why cλ (∀x(R(x) → B(x)) > 0 fails.

cλ (∀x(R(x) → B(x))

= lim
n→∞

∑
n∧

i=1
Qhi

(ai)|=
2n∨
j=1

(
n∧

i=1
(¬R(ai)/B(ai))

)
j

cλ

(
n∧
i=1

Qhi(ai)

)

= lim
n→∞

∑
n∧

i=1
Qhi

(ai)|=
2n∨
j=1

(
n∧

i=1
(¬R(ai)/B(ai))

)
j

n−1∏
i=0

cλ

Qhi+1
(ai+1)

∣∣∣∣ i∧
j=1

Qhj (aj)



= lim
n→∞

∑
n∧

i=1
Qhi

(ai)|=
2n∨
j=1

(
n∧

i=1
(¬R(ai)/B(ai))

)
j

n−1∏
i=0

ihi+1
+ λγhi+1

i+ λ
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≤ lim
n→∞

n−1∏
i=0

i+ λ(1− min
1≤t≤r

γt)

i+ λ

= 0

The last step follows from∏
n≥1

an = 0 ⇐⇒
∑
n≥1

(1− an) = ∞ for ∀n : 0 < an ≤ 1

The reason that cλ fails to confirm universal generalization is that the speed of con-
vergence is too slow.

∞∑
i=0

λ · min
1≤t≤r

γt

i+ λ
= ∞

It seems that it is easy to rectify. If we use

cδλ

(
Qj(an+1)

∣∣∣∣ n∧
i=1

Qhi(ai)

)
:=

n1+δj + λγj

n1+δ + λ∑
1≤k≤r

n1+δk + λγk
n1+δ + λ

=
n1+δj + λγj∑

1≤k≤r
n1+δk + λ

rather than cλ, then the convergence is guaranteed. However, although c′λ agrees with
the principle (Ex), yet it violates the postulate (SP). If the δ is small enough, it can
even agree with the frequency interpretation.

Actually, there are several approaches to confirm universal generalizations, for
example, [2] and [10]. Hintikka’s methods is very complicated. It depends on how
many Q-predicates are non-empty. Zabell’s methods is much simpler. He modifies
the sufficientness postulate (SP) a little bit, which makes it seem a little bit ad hoc.
Neither of their methods agree with the sufficientness postulate (SP). It seems that
the difficulty focuses on the sufficientness postulate, however, sufficientness pos-
tulate is not the crux of the problem. Carnap’s methods, as well as other similar
methods, misses something very important for the “causality”. The temporal order
should not be neglected by any inductive logic. c′M tries to characterize causality with
computable functions, as a byproduct, the proposition “all ravens are black” gets con-
firmed.

4 The Prediction of some specific pattern with Random Sampling

The Prediction of some specific pattern According to theorem (3), given complete
records of past history, we can predict the next states of our universe. However, we
can’t keep all of the past information in memory in practice. Usually we only focus
on some specific pattern of the universe. For example, when we talk about whether
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ravens are black we do not care about whether it will rain tomorrow or whether dog
barks. Can we predict whether some pattern will last in the next state without record-
ing the complete information of the past history? Theorem (4) assures us that we can
concentrate only on some specific pattern and predict well.

For any formula ϕ(x), we write ϕ(⃗a) ≡
n∧
i=1

ϕ(ai/x) without confusion, and

at:n := atat+1 . . . an−1an, and a<n := a1 . . . an−1. Hence, ϕ(a1:t)means
t∧
i=1

ϕ(ai/x).

Lemma 4 For probability measure p and q, we have∑
x

(p(x)− q(x))2 ≤ 2D(p∥q)

where D(p∥q) :=
∑
x
p(x) ln

p(x)

q(x)
.

Proof Let f(p) := −p ln p, then we have f ′(p) = − ln p− 1 and f ′′(p) = −1

p
.

According to Taylor’s theorem, there exists some r between p and q such that

f(p) ≤ f(q) +
f ′(q)(p− q)

1!
+
f ′′(r)(p− q)2

2!

insert f, f ′, f ′′ to the above formula, we have,

(p− q)2 ≤ 2r

(
p ln

p

q
+ q − p

)
therefore,∑

x

(p(x)− q(x))2 ≤ 2
∑
x

r(x)

(
p(x) ln

p(x)

q(x)
+ q(x)− p(x)

)
≤ 2

∑
x

(
p(x) ln

p(x)

q(x)
+ q(x)− p(x)

)
= 2D(p∥q)

□

Lemma 5 For ν ∈ MU , and for any sentence ϕ,

c′M (ϕ)
+≥ 2−K(µ)µ(ϕ)

Proof

c′M (ϕ) =
∑
Θ|=ϕ

c′M (Θ)
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≥
∑
Θ|=ϕ

cM (Θ)

+≥
∑
Θ|=ϕ

2−K(µ)µ(Θ) [Lemma2]

= 2−K(µ)µ(ϕ)

□

Theorem 4 (Convergence Theorem) For ν ∈ MU , and for any formula ϕ,
∞∑
t=1

∑
ϕ(a<t)

µ (ϕ(a<t))
∑
ϕ(at:k)

(
c′M

(
ϕ(at:k)

∣∣∣∣ ϕ(a<t))− µ

(
ϕ(at:k)

∣∣∣∣ ϕ(a<t)))2

<∞

Proof
∞∑
t=1

∑
ϕ(a<t)

µ (ϕ(a<t))
∑
ϕ(at:k)

(
c′M

(
ϕ(at:k)

∣∣∣∣ ϕ(a<t))− µ

(
ϕ(at:k)

∣∣∣∣ ϕ(a<t)))2

(a)

≤ 2
∞∑
t=1

∑
ϕ(a<t)

µ (ϕ(a<t))
∑
ϕ(at:k)

µ

(
ϕ(at:k)

∣∣∣∣ ϕ(a<t)) ln
µ

(
ϕ(at:k)

∣∣∣∣ ϕ(a<t))
c′M

(
ϕ(at:k)

∣∣∣∣ ϕ(a<t))

= 2

∞∑
t=1

∑
ϕ(a1:k)

µ (ϕ(a1:k))

k∑
m=t

ln
µ

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))
c′M

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))

= 2
∞∑
t=1

k∑
m=t

∑
ϕ(a<m)

µ (ϕ(a<m))

( ∑
ϕ(am:k)

µ

(
ϕ(am:k)

∣∣∣∣ ϕ(a<m))
)
ln

µ

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))
c′M

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))

≤ 2(k − t)
∞∑
m=1

∑
ϕ(a<m)

µ (ϕ(a<m)) ln
µ

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))
c′M

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))

= 2(k − t) lim
n→∞

n∑
m=1

∑
ϕ(a<m)

 ∑
ϕ(am:n)

µ (ϕ(a1:n))

 ln
µ

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))
c′M

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))

= 2(k − t) lim
n→∞

n∑
m=1

∑
ϕ(a1:n)

µ (ϕ(a1:n)) ln
µ

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))
c′M

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))



Xi Li / Why Inductive Logic Needs Solomonoff Prior? 65

= 2(k − t) lim
n→∞

∑
ϕ(a1:n)

µ (ϕ(a1:n))

n∑
m=1

ln
µ

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))
c′M

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))

= 2(k − t) lim
n→∞

∑
ϕ(a1:n)

µ (ϕ(a1:n)) ln
n∏

m=1

µ

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))
c′M

(
ϕ(a1:m)

∣∣∣∣ ϕ(a<m))
= 2(k − t) lim

n→∞

∑
ϕ(a1:n)

µ (ϕ(a1:n)) ln
µ (ϕ(a1:n))

c′M (ϕ(a1:n))

+≤ 2(k − t)K(µ) ln 2
<∞

where
(a)

≤ follows from Lemma (4), and the last inequality +≤ follows from Lemma
(5). □

It follows from the above theorem that

c′M

(
ϕ(a1:k)

∣∣∣∣ ϕ(a<t)) t→∞−−−→ µ

(
ϕ(a1:k)

∣∣∣∣ ϕ(a<t))
As long as the pattern we are focusing on will last in the true environment µ, c′M

can help us build our belief as we gain more experience.

Prediction with Random Sampling In practice, even for some specific pattern ϕ,
we can’t check all of the relevant information in past history. When wewant to predict
whether it will hold in the next states, we just do some random sampling to study it.

Assume that the real world
∞∧
i=1

Qhi(ai) is computable and deterministic. We

want to predict whether ϕ(x) ≡ R(x) → B(x) will hold in the next state. Then we
do random sampling in the following strong sense. We select all of the positions to
check whether ϕ holds with a sampling function t : N → N such that ∀i(ti < ti+1)

and w1:∞ is martin-löf random ([5]), where wi = J∃k(tk = i)K. If all of the samples
we select make ϕ true, then, should we believe that ϕ will be true in the next state—
even if ϕ may be false in many states that we have not checked? Yes! Although we
can’t give some concrete bounds as in theorem (4), our belief will converge in the
limits.

Theorem 5 If the sampling function t follows the above convention, then

c′M

(
∀xϕ(x)

∣∣∣∣ n∧
i=1

ϕ(ati)

)
n→∞−−−→ 1
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Proof We prove by two cases.

Case 1. If there are only finite positions that make ϕ false in total, namely,

|{i : Qhi(ai) |= ¬ϕ(ai)}| <∞

then all these cases can be coded with finite Kolmogorov complexity. According to
the Weak instantaneous bounds in [4], it is easy to prove that

cM

(
¬ϕ(atn)

∣∣∣∣ n−1∧
i=1

ϕ(ati)

)
+≤ 2−K(tn) n→∞−−−→ 0

then it follows that

c′M

(
ϕ(atn)

∣∣∣∣ n−1∧
i=1

ϕ(ati)

)
n→∞−−−→ 1

Case 2. If ϕ is false infinitely often, |{i : Qhi(ai) |= ¬ϕ(ai)}| = ∞, we can define
some random test as follows.

Since the real world
∞∧
i=1

Qhi(ai) is computable by assumption, we can generate

all of the positions that ϕ is false, and define the following subsequence ζ1:∞ ofw1:∞.

ζn = wm where m := µx (|{i ≤ x : Qhi(ai) |= ¬ϕ(ai)}| = n) .

So we have the subsequence ζ1:∞ = 0∞ ofw1:∞, which contradicts with the assump-
tion of the Martin-löf randomness of w1:∞. □

5 Conclusion and Future Work

In this paper I have introduced Solomonoff prior into inductive logic, and ana-
lyzed the advantages of Solomonoff prior over Carnap’s λ-continuum. Causality is
neglected by Carnap and is characterized by Solomonoff with computable functions.
As a byproduct, the proposition “all ravens are black” can be confirmed in a natural
way. In the new “inductive logic”, if we can do random sampling in a right way, we
can prove the convergence theorem for some specific pattern, and make good predic-
tions without record of the complete information of the history.

However, there are lots of further work that can improve the results of this paper.

• In this paper we do random sampling in a very strong sense. In the future work
we should prove the convergence with some weak random sampling.

• The expressive power of the monadic first order logic is very limited, we will
study how to define c′M when relation symbols are added into the language.
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为什么归纳逻辑需要所罗门诺夫先验？

李熙
北京大学哲学系

xli@pku.edu.cn

摘 要

二十世纪五十年代，卡尔纳普发展了归纳逻辑，他把概率看作一种证据对假

设对“确证度”；二十世纪六十年代，所罗门诺夫用通用归纳方法进行预测。为

了增强归纳逻辑的归纳预测能力以及扩展所罗门诺夫通用归纳方法的表达力，本

文整合二者。本文首先将所罗门诺夫先验概率的思想引入归纳逻辑中，在这个框

架下，证明一阶逻辑版本的所罗门诺夫完全性定理，然后比较二者的优略。在卡

尔纳普的归纳逻辑中，不管正面证据有多少，对像“所有乌鸦都是黑的”这种全

称句的支持度最终都为零，而在用所罗门诺夫先验改造的归纳逻辑中，可以证明，

在任何可计算的世界中，“所有乌鸦都是黑的”可以得到确证，只要在那些世界

上真的所有乌鸦都是黑的。在所罗门诺夫的模型中，要证明完全性定理需要记录

所有的过去信息，在修改后的归纳逻辑中，我们可以只关注某种具体的模式而忽

略其它无关信息并证明类似的收敛定理。我们甚至可以不用记录所有的相关信息

而采用随机抽样的方法建立合理的信念。


