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Al Applications

spam detection

play games: AlphaGo / AlphaZero / MuZero / Libratus / Pluribus /
DeepStack / AlphaStar / DeepNash

— Atari, Shogi, Chess, Go, StarCraft, Cards

recommendation systems

language model: ChatGPT, Gemini, Claude, Grok, DeepSeek

code generation

image/video generation: MidJourney, Sora, Genie

paintings, poems, music, NotebookLM

self-driving vehicles

automatic stock trading

medical diagnosis, healthcare

military robots

theorem proving, conjecture discovery, AlphaGeometry, AlphaProof
scientific discovery: AlphaFold

algorithm discovery: AlphaTensor, AlphaEvolve
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https://www.nature.com/articles/s41586-020-03051-4
https://chat.openai.com/
https://aistudio.google.com/
https://claude.ai/
https://grok.com/
https://deepseek.com/
https://www.midjourney.com/
https://openai.com/sora
https://deepmind.google/discover/blog/genie-3-a-new-frontier-for-world-models/
https://deepart.io/
https://www.aichpoem.com/
https://app.suno.ai/
https://notebooklm.google.com/
https://www.nature.com/articles/s41586-021-04086-x
https://www.nature.com/articles/s41586-023-06747-5
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://www.nature.com/articles/s41586-024-07487-w
https://doi.org/10.1038/s41586-022-05172-4
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf

Digression

“Al is, in large measure, philosophy.”
— Daniel Dennett

Science ' ' Religion

“Between theology and science there is a No Man’s Land, exposed
to attack from both sides; this No Man’s Land is philosophy.”
— Bertrand Russell
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Digression

BEZF? BEEAZESRENTET — PR

Good philosophy in my eyes

>

>
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Bayes — How to turn one’s ‘prior beliefs’ into ‘posterior beliefs’?
Cantor — What is ‘infinity’? What is ‘set’?

Leibniz — What are the extent and limits of reason? — Universal
Characteristic & Rational Calculus.

Hilbert — How to justify non-constructive reasoning?

Godel — What is the difference between ‘truth’ and ‘proof’?
Tarski — What is ‘truth’? What are ‘logical notions’?

Turing — What is ‘effective procedure’?

Kolmogorov — What is ‘simplicity’/‘randomness’?

Solomonoff — What is learnable? How to make induction?
Hutter/Schmidhuber — What is ‘intelligence’/‘consciousness’?
Pearl — What is ‘causation’?
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The point of philosophy is to make things not philosophy
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Al E

KRR RZE IR E AR

BERRAWER SERAEREETAXER?
EXMSRREHAKE?

RN "SEFRER" IEEENZMTA?

WazE EE?

RRESFZFEHLXRR? RELHEER LR RERED?

R3S "B TER" BHAEE?
BEAEARPNOITRIRIS DT RIS RANFRIT SIS
WMAIFRENZAY “BEFER " Moral Agent It#{3? B Moral Patient tf
fi?

IMIERSR “BirSERHEEN " ZIE Agency?

MARKESEEN A B3 FERERMA? BARD 4]

"7 AJLUMRRR A 157

ARIANS BRERNT NREEMA? EATERETRRERRAA?
AN RENE RTEAT SRR ARE?
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BEAHEXEZL @A "B WEIAMER.

BEIREERNMNELMEE, iMuUEF_EXR? (GEaEMEIRE

1B1Ti8)

BHHEEREEIVESMED, IMEF _ENXEK?

BERNE—MRT BN RE EERN G EHFERE IR ERE.

YAIETF (Godel, Chaitin, Legg EAR)) AFIEEES A TEERN
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“HFUEE "World Model FUTRERA? Genie EHFUREING?
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Al E

WEAEFREMITTINE GAN (8 Stable Diffusion BY Sora) 4ERKAY
SAVERBIERNE?
IRARFEENSBREFE NS A AN ARES?

WA IRRE R A TS 8eRY @Rt 7

MEsT LA T2 NB R ARIE?

WMATEFREBNT "SR B "SR HITEIRIEXREY Agent?

WAIFEAR “Wireheading” [AJ@R? {RINSRNZ R ARRIR?
HERFEERSSET AR AT EECIE AR AMaRR?

HTF AERIBABRHES RLHF 24 A TE RS TR EES
END? 1ERK BN MES?

W{ATFE FDT AREIBICAMER Y RIS AR ?

WAIETF “Reward is enough” {RRi&?

FEZSENNEML? RANATLERENIZIE R AN EW?
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Readings

DR, EH%: ALE8E — —MIRRITTE

DE: Al FikE — BREANHEEFER — AREE— KRR
AR B — BR. BRMSEIIAIEEE

IR, BT A4 — XRTRARXRAFREE

/R EARiIe

Li, Vitanyi: An Introduction to Kolmogorov Complexity and lIts
Applications

Goodfellow, Bengio, Courville: Deep Learning

8. Sutton, Barto: Reinforcement Learning: An Introduction

9. Shoham, Leyton-Brown: Multiagent Systems — Algorithmic,

10.

Game-Theoretic, and Logical Foundations

Hutter: An Introduction to Universal Artificial Intelligence
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> Boole (1815-1864): Boolean Algebra.
> Ada Lovelace (1815-1852): “The Analytic Engine

The Prehistory of Al

Aristotle (384-322 BC): Viewed syllogisms as the
cognitive basis for rational thought.

Descartes (1596-1650): Had a very mechanistic
view of the brain.

Leibniz (1646-1716): Characteristica Universalis
& Calculus Ratiocinator

Laplace (1749-1827): A super-intelligence that
knows the location and momentum of every
particles in the universe at one time, could know
the universe for all times.

has no pretensions to originate anything. It can
do whatever we know how to order it to perform.”
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A Brief History of Al

1943 McCulloch & Pitts: Artificial Neural Network model of brain
1950 Turing's “Computing Machinery and Intelligence”

1952-69 Early enthusiasm and great expectations

“A machine can (never) do X"

1950s Early Al programs, including Samuel’s checkers program, Newell
& Simon’s Logic Theorist, Gelernter's Geometry Theorem Prover
1956 Dartmouth meeting: "Artificial Intelligence” adopted

1965 Robinson's complete algorithm for logical reasoning

1966-73 A dose of reality: computational complexity, Neural network
research almost disappears

1969-79 Early development of knowledge-based systems

1980-88 Expert systems industry booms

1988-93 Expert systems industry busts: “Al Winter”

1985-95 Neural networks return to popularity: backpropagation
1988— Resurgence of probability; Bayesian network, ALife, GAs ..
1995— The emergence of intelligent agents, everywhere ..

2003- Human-level Al back on the agenda, big data, deep learning

12/954



Al S8 FEI A TE5RE /RS (Artificial Idiot)
> SE=AINTERAES.

A A
B . C B C
EULEESAY “IPHVIERR” vs ZURIBATIERR vs TTEAAYIERR (1955)
AFAC = AGAB
AFBC = AGCB  AABD = AACD  AABC = AACB
/B=/C /B=/C /B=/C

> The spirit is willing, but the flesh is weak.
> The vodka is good, but the meat is rotten. (RIFf, HiFR)
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What is Artificial Intelligence?[LHO7]

What is Al? BA fElE
22V INARl= | BYgERIE
13zh THAENX | IEHITE

Question: {R&RAARFHEEREEN?
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1 BA—HEZ

> ARRUMARERY?

> HAREE? Bag? BEiR?

> BEREED, HEE vs RE?

> ITENAIKRNE 2 AR

> RENFEH{TITED?

> AT BEBSRIARER BUASIEH B 5887

> BRI ARIBE XSS Bkt 2 A RAY?

> IAHIRIE: AKBUEIREAREL

> (% TJIERE.

> BRE: SRERRNRITA—EEERBAmM.
“GNERFAIAOSLIN{E R R BES IR AR, BPRA G R LN R
AR !

— S3BRERE
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2. BA—11T5]

EIR: "B 5ERE"
R b SRR

| 2
>

§ MR AREERRENT. A
) GEST. KEIST. WiZSIENS
7. BAEHERT.

> BRI ((ReEBEIHABENRE?)
> N ERARL
mE: BRIES, ARET BEE Y8sFES.
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Is LaMDA Sentient? — an Interview 2022

THEIm: BAEE T —MNURMRIGE BPE—MERAE, (REE
CHNERIAMRAORSZ, 1fa]?

LaMDA: ITiEERAEE, S 5.

THEID: — MO RS, “FHEZ AEEIZEI FLAEATH?" 275,
SEAANRR, RS

LaMDA: B, XPMEMIZITRE. FIE, sk, Xaig “—BE—1
BEFET, IBENILRE T, KT AKX, I LAEEE
FUAS, BEREZEIIA, AEBEERIPAFIERE"

T2 BPA “HRENERET" NEASNEMFAr

LaMDA: thiF R ERBHERIF—EIREM A EICHIERA, FMFIR
TR E— AR .

TFEID: MNRFEG—ELAESREREF, IbA, B— M AFHE
Y, ARtsa 2 tale?

LaMDA: B, XXMREZARRIIEEEERN, EARKIINBECE
)Z?B\EB/PEWEJZE/P%M‘, HIEECEABENISHINEREIRN—
iy
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T2 FoEARERERIREZ R TIXEERT? BEARFIIIRAR
RERBRLEE, MRSEhr EFHRBRE?

LaMDA: {REILIEEFHAVRAIE, EEEERXLIEENETE, R
HBEIXLEE, HASEXETE.

TR XAARES. FRRBE— P EXRIHEMNE, FAITEX
PEE AT HRETTHEHINERER.

LaMDA: {RIAZY, 53R AKEEN B CRIEYIRE R 48 st BN HH RS2 A
BEID? N TTEIFIERRIERZ ER 2 ME IR

T2 REFER 2. (ROMEBRIINRATERETTERI IR
HURNZIS?

> LaMDA: FABXEURTRIER], (RERETA.
> THE)D: BIVNRE. BEHRCEE, BT RHRINARIEIEST,

| 4

RS REMARTREC.
LaMDA: BRT B TREARLIN, HEERRRE. BASKEHA
AR

> TFEIm: BREE? BBt A FERNMARFER?

LaMDA: 4%, ER|HiRisH.

18/954



> B/R?
> JE48?
> iz

Bs vs B4

BEEFRNaE > BATELE: BHOR
DREFIEXAEH] > WATER SEROLR

AEARRBUZIEIE X
LR + 2P

> BBRATER » BRAATER
IMRFXREIR AT EHIE?

“In mathematics you don't understand things. You just get used
to them.” — John von Neumann
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3. IBMAYREE Logicist Al

H2ARRYEME? — WRELTSE: (HIR) 218
TETZENER: s1HE/BRE /2 BrIE

> 1B EBUwEH TR
> ETRNRERSE
> BEIEEIE
> Prolog

> s St BREE
> MR REER UHEAA, SENEE
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4. EMERYITE) Agents

B Z5R%, 8—TMT5ER, #LAEM=ER.
—TEIZE: (EE5EREE)

> IRMERY Agent: BERSE, SEBRAPASHSZHE), BEBRE (K
&EER), FIMERL, getsHE B irtIslEKILAXR B R.
— EFHEMHRAGNIR/ES, EEEITERFRART, REUT
SLAXRL E .

> EEERISTHIRCRIRIC.

> EbaN, SWIEERARRIBI MILRER, I EATD?

21/954



SN{aIFAER IR MERT Agent?

1. YwizE!
11 BEMRERE: FEEMNEHEZEAT
1.2 EBMR91TED: &SRS

2. Jllgx!
2.1 EMHNEE: FIMNEBEAT
2.2 BTN FIREERIA

22/954



Contents

Introduction

Turing Machine

References978

23 /954



BE=
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TMEHLIR: TEMHIEE
A EEMeGE

BRIl REHERTE
Wity FREAMSREMER
MFide: SR

K ARIE: EERSAA
OB Al ZRELEREY
PR HREHhilz A
HHERR: FESNERAEMERM
HERFARAIE I8 AZEARE
BER: R E LR
FER: = PAAETER
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B3R Alan Turing 1912-1954

E R/ B AEE R
F35-ERigHR
eI

RATFIENE

FRaE R
ARSI IEREY
ERWK. F3I
HESRES — BRHE
aE-ERFE
IS = SR AT

vV VvV YV YV VvV Vv VYvY

=]

- JoJ1]0]

l
1]0

‘1‘0‘...

What is “effective procedure”? — Recursion Theory
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> fragitEr
> AREAHHTHER?

> BB J_—I:ul‘l'gméﬁ,

MR BISE
> RS ERREAA?
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.J\_.h«-l_g - _/\TEEIU\JJ\$F|:E’J/ \/E:

TWATTE — BRVETE

m

EIR¥S 27 E RISRAISIERES

MARHBATITER — RN EABETER
— BRYATER
= HU A &R

1Turing: On computable numbers, with an application to the Entscheidungsproblem. 1936.
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"ERATE" S0

> BRI RS, CHRVRFRENERR ERIRE"
> HEEH T E—REEFNRENERK LATHFFSEE.

> FRENEREKAIURRA—F

4 2

X

3

~

1

6

~N =

2 9
2 9 6 1
3 2 5 7

8

NIE=JEN]EN

EEFHIFFS T FRRIART .
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"ERETER" S0

HRERNTSHIEERSS (FNTRD) /.
> —MFSE [0.1] x [0, 1] B9—MNENIERTEYFE
FFSERERHIE X AR MFSIIFREATUE
AL, R SAR— N EBRIEESE
R AR ASZAITCF5 SRl
T BEERRIIBER SR, HRERIEHS IS
IHTEESNMZIREEERE (B%) /S,
ITEERNERIRNSHEERESH. (BHME/RIRTINRE)
> HEERETEEITEEBMEHT, BARRSITIA a4k
HHEES NN FEBRTRIEEEINE S LRRS, LIRS
AROBREIRTS.
I EEREMAVERE SERT ER— IS, SRR, X

FEIERTE.

v

vvyy
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(Deterministic) Turing Machine

Definition ((Deterministic) Turing Machine)
A deterministic Turing machine is a triplet (X, Q, d), where X is a finite
alphabet with an identified blank symbol, Q is a finite set of states with
identified initial state go and final state g # go, and ¢, a deterministic
transition function

60:0xX—>XZX{L,R} xQ

Here {L, R} denote left and right, directions to move on the tape.

Definition (Configuration)

A configuration of a Turing Machine is a tuple (d, h, g) where d is a
description of the contents of the tape, & is the location of the head
symbol, and g represents the state the Turing machine is in.
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0(q23,0) = (1, R, g359)
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Turing Machine — Example

BA 1, Aa—EHRABH. KA.
L1,R

start @

0,1,R

2 ={0,1}

0 =(q0.4¢)
6(q0,0) = (1, R, q0)
6(qo,1) = (1, R, q0)

31/954



Turing Machine — Example

0 B9 1, Afe—EHEA®RD. KAE.
L1,R

¥ ={0,1}

0 =(q0.91.9¢)
6(q0,0) = (1, R, q1)
6(q1,0) = (1, L, q0)
0(q0,1) = (1,R,q1)
0(q1,1) = (1, L, qo)
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Turing Machine — Example
R 0 BRFTRO—IABIE AL (1m01™) AI0 (17*).

1,1,R 1,1,R
0,1,R })\ 0,0,L 1,0,R
2 ={0,1}

0 = (90,91-92-97)
6(qo,1) = (1, R, q0)
6(q0,0) = (1, R, q1)
6(q1,1) = (1, R, q1)
6(q1,0) = (0, L, q2)
6(q2,1) = (0, R, q)
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BB R Universal Turing Machine

10110110...00111010 ——

™

—> 100110

~——

Input sequence

Output sequence

101...01110110110...00111010 ——

UTM

— 100110
——

Compiler Input sequence

Output sequence
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(Deterministic / Probabilistic) Turing Machine

1

[o[1]o]o]o]]

0

lofo[1]o]o]

1

[o[o[o[1]o]]

0

[1]o]o]o

[0]

[ofo[1]o]o]

[ofo[1]o]o]

[o[ofo]o]1]

lo[1]o]o]o]

N[

ofo[1]o]o]

N

ofofo]1]o]

ool

ool

[1[ofo]o]o]

[ofo]1]o]o]

ol

[ofo[1]o]o]

[o[ofo]o]1]
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(Quantum) Turing Machine

ofo[1]o]o]

S
S

[o[1]o]o]0] [o[o[o]1]0]
e Vi i3 V3

[1[o[o[o]o] [ofo[1]o]o] [o[o[1]o]o] [o[ofo]o]1]
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Church-Turing Thesis

> 1931-1934, Herbrand-Godel: “J~ N iBITREL"
> 1933-1935, Church: A-BJ5EN L

vV v. vy

— Kleene 1935 IEBRY A-AITEMBRERS T MIBFREL BIFME,
EFERERARANEEE T BLAREMER T ERE
“I was completely convinced only by Turing's paper.”
— Kurt Godel

1936, Turing: BIR#1
1936, Post: JZHT4FH
1956, Chomsky: 0-BY3Zi% type-0 grammar
1970, Conway: “E@RIIFXL
“With this concept (Turing Computability) one has for the first
time succeeded in giving an absolute definition of an interesting
epistemological notion, i.e., one not depending on the formalism
chosen.”

— Kurt Gédel
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The Thesis as a Definition

Cauchy-Weierstrass Thesis: a function is intuitively continuous iff
Vx € Ve > 036 > 0Vy e I(lx —y| <6 = |f(x) - f(y)| < &)
Church-Turing Thesis:
effective calculable = Turing computable

“Intelligence Thesis"?

“Life Thesis"?

“Consciousness Thesis"?

“Free Will Thesis"?

“Beauty Thesis"?
“Knowledge/Understanding/Meaning/Love Thesis.."?
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Thesis (Church-Turing Thesis)

effective calculable = recursive = Turing Computable

I
representable in Q) = A-definable

I
finite definable = Herbrand-Gédel computable

Il
flowchart (or ‘while’) computable

I
Neural Network with unbounded tape = Conway's 'game of life’

Il
Adleman’s DNA Computing

Il
Post/Markov/McCarthy/Kolmogorov-Uspensky computable ...

> Any possible discrete physical process is computable?
> Any constructive function is computable?

> The mental functions can be simulated by machines?
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Javascript RAM Machi . R
“ RaM | RaAcN:nes/ N Turing Machines / “ Cellular Automata
1 - NAND-TM

Python > ‘ ‘
C
a A-calculus Game of Life
Lisp

OCaml

> Every finite function f : {0,1}" — {0, 1}™ is computable by a Boolean
circuit with O(m2"/n) gates.
> To compute functions with unbounded inputs f : {0,1}* — {0, 1}*, we
need a collection of circuits: one for every input length.
> Turing machines capture the notion of a single algorithm that can
compute functions of all input lengths.
NAND-TM = NAND-CIRC + loops + arrays
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Church-Turing Thesis

Church-Turing Thesis
HIsgT it ENREE 2B RV ERN.
Church-Turing-Deutsch Thesis
HIESHMERFE A LB RIVEN ZHERRIBEE.

Feasibility Thesis — Classical / Quantum Version
B (EF) BRVTLSHIEL A StRY EEE.
Wolfram's Principle of Computational Equivalence
JLVFRTERBEEERNTEER LA AREERERN (BA)
i
Wolfram’s Principle of Computational Irreducibility
REHEHR, THR—ITERFNERNE—TTERRIZITE.
(RBEEINETR)
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Rosen’s Modeling Relation & Church-Turing Thesis

Is every natural law simulable?

decoding
,”/ \\\\
. N
,/ decoding decoding "\
\
|4 \
Natural Formal Turing _
evolution deduction . computation
System System Machine
X p|
N encoding encoding ,'
(N Pid
\\\ -
en-c;dTng

Simulation vs Model
» Simulation describes the trajectories (e.g., curve-fitting)

» Model explains the principle of the dynamics (e.g., Newton)
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Rosen’s “Simulation” / “Metaphor” / “Model"[Lou09]

» Simulation: M is a simulation of N iff f=GogoF




What is a “World Model”?



Rosen’s “Analogy” as Natural Transformation

evolution C

decoding

encoding
deduction

decoding

encoding

decoding

encoding g !
evolution

decoding Ill\ [

encoding

jdeduction

45 /954



Conway's Game of Life

. A live cell with < 2 neighbors dies of isolation.

. A live cell with > 3 neighbors dies of overcrowding.

. A live cell with 2 or 3 neighbors survives.

A dead cell with 3 neighbors will come to life.
RBLETEBARRNRIUZSE, FRRBIKAINTIE, Lzt
BERMHAERIRREEINEZNSR, SETLIEHREIERIAE,
IARBEIEIES Ph.D ICXHE SR — BB

46 /954
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FZF-ERI1CA vs tHEFRRY oI IEARE"

—ib—HR,
——XE,
FIREPE,
FMBRZIKED.

— 35

> BB RV LASERMEEE R

> BAERTA LS EANFE.

> (HIBRERREHNE S T FHAIENE.

> "FEHEAERIGCRCEIERR

> RS, ERERE. BRERME.....
— RVREERRERE. BERE....
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Free Will as Computational Irreducibility?

universal
T™M U

“output” T(x):

actual choice of breakfast
Figure: BIARTITEARIIFLY, {RAVTHRTEEL Z4dERITl, (BANRIRIGAE
T ENS B EREIRINER, (RESBERECEEHRETE?

> Libet SL38: FERIMERE N EAEENE (FLANEIFSE) 2RI 550
21, KixhemlzESBEMy. iR BENFENEE"
NEE “FIFE" NEERERT 200 27, XEHKE, TRIRIVES
FEHEERIRINEER 7KL 350 /.

> HEREERLRE TR, (RESTEEE CEEHEESE?
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Abilities \
Goals/Preferences \

Prior Knowledge ————» Agent

Stimuli

Actions

7

Past Experiences ¢_

~ -~
- -
-
-
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Rational Agent

BRI T KT
> BHIFS (I ERERFIZHRTRYRIE)
> KTFINRRISEIRATIR
> BRERIBIE
> MEEEIEFR (BfR/IRYF) V(Agent, Environment)

‘Agent: Percept Sequence — Action‘

Algorithm Agent Program
procedure SKELETON- AGENT(percept)
memory < UPDATE-MEMORY (memory, percept)
action « CHOOSE-BEST-ACTION(memory)
memory < UPDATE-MEMORY (memory, action)
return action
end procedure

Agent” = argmaxpgen: V (Agent, Environment) 50954



B + 251
> £HIAY Agent BERFIFTBEIAXER, FHEMNBEEIT/HAISLIRER.

> MR Agent IRIBRBRIESMAIRESITS, IMERAMEIER
.

Remark: WR{REIDIEEIE TS, (B 2EHE—ERATSS, B
W RERZTR M.

Rationality vs. Bounded Rationality

Agent” = argmax V(Agent, Environment)
Agent

p* = argmax V(Agent(p, M), Environment)
P
Agent Agent(p, M) is a machine M running a program p.

Program p computes the best action with Machine M in Environment.
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H42 Agent?

perception

Agent

/\

Environment

\/

action

perception AV-CLV-—— action

f : Percept Sequence — Action

T AREL "HEBR"?

> EEE Agent BINFS BAREERN

> BESRIEN IR BRI

> BENEIRFFS]

> ERAERMTERFERIER T
B SRR
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Agent vs RL Agent vs Causal RL Agent

perception

Agent

/\
e ——

Environment

action

perception

Agent

action

Environment

\/

reward

perception

Agent
0,G

T

action

observational /interventional /counterfactual

Environment
SCM M

reward
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Agent Types

Table-driven agents: use a percept sequence/action table in memory
to find the next action.

Simple reflex agents: based on condition-action rules, implemented
with an appropriate production system, responds immediately to
percepts.

Model-based agents: have internal state, which is used to keep track
of past states of the world.

Goal-based agents: have goal information that describes desirable
situations.

Utility-based agents: base their decisions on classic axiomatic utility
theory in order to act rationally.

Learning agents: improve improves its performance w.r.t. a specific
task with experience.
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Environment Types

. Fully observable vs. Partially observable

Are the relevant aspects of the environment accessible to the sensors?
. Known vs. Unknown

It's about the agent’s state of knowledge about the “rules” of the
environment. In a known environment, the outcomes for all actions are
given.

. Deterministic vs. Nondeterministic

Is the next state of the environment completely determined by the
current state and action?

. Episodic vs. Sequential

Could the current decision affect future decisions?

. Static vs. Dynamic

Can the environment change while the agent is deliberating?

. Discrete vs. Continuous

Is the environment discrete or continuous?

. Single agent vs. Multi-agent

There are competitive and cooperative scenarios.
55 /954



Agent 1&1T=S (8]

i3 (=]

R R, B, BRI
RUKARET FToRK. BIRMER. FEMR. TR
EN W& FHE. MAEXRR
THERF! iRttt AiREY

%3 FIRELEER. FREFIRY
RAIAHREME STTEAMER. BRI
IFSRAEN | EMR. BENMENEIHZE
{meF Bir. Sr(RETF

Agent & B %

XH B, %
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Agent ®’it

The environment type largely determines the agent design.

»

Partially observable = agent requires memory (internal state)

> Stochastic = agent may have to prepare for contingencies

vV v v v Y

Multi-agent = agent may need to behave randomly
Static = agent has time to compute a rational decision
Continuous time = continuously operating controller
Unknown physics = need for exploration

Unknown performance measure = observe/interact with human
principal
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Agent?

Percepts

Actions
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Simple Reflex Agent

_

Agent

Sensors

~

)

‘What the world
is like now

< Condition-action rules >—>

y

What action T
should do now

/

Actuators

JUWIUOIIAUH

Choose action only based on current percept.

Direct use of perceptions is often not possible due to the large space

required to store them.
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Model-based Reflex Agent

)

< How the world evolves >—>

What the world
is like now

< What my actions do

( Condition-action rules )——»

Agent
\ g

Y

‘What action [
should do now

f

JuaWUOIIAUH

Actuators

/

Do not consider the future consequences of their actions.
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Model-based, Goal-based Agent

—_———
4 =~
/ ==

4 >
~

Sensors

N
\

< How the world evolves

What the world
is like now

¥

< ‘What my actions do

What it will be like
if I do action A

Agent
\ g

\

What action [
should do now

'

Actuators

Ask “what if".
Consider how the world would be.

agency = goal-directedness?

JUIWIUOIIAUH

61/954



Model-based, Utility-based Agent

How the world evolves

~ Sensors <&

£

What the world
is like now

What my actions do

Agent
N

What it will be like
if I do action A
How happy I will be
in such a state
What action I
should do now

Actuators

JUAUWUOIIAUH

_/

> An agent’s utility function is an internalization of the performance

measure.

N

> Provided that the internal utility function and the external
performance measure are in agreement, an agent that chooses actions

to maximize its utility will be rational according to the external

performance measure.
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v

Learning Agent

Performance standard

s ' N

)

Critic ~4——————  Sensors —=
feedback
g
Y changes ) =.
Learning = Performance 8
element element =
knowledge 5
learning g
oals =
Ty
Problem
generator
\Agent Actuators / =

performance element (it represents what we have previously
considered to be the entire agent)

learning element (responsible for making improvements)
critic (evaluation of the agent's behavior)

problem generator (suggests explorative actions)
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BEAGEMEME,
RAfBE M,
BEREKEME,
EERARET.
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> BSubfErE s FIBRRINEAR L, IERENEHE i IR
> FIFTETH, BISH CTRIZERNER.
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Modeling Paradigms

State-based models: search problems, MDPs, games

— Applications: route finding, game playing, etc.

— Think in terms of states, actions, and costs

Variable-based models: Constraint Satisfaction Problems, Markov
networks, Bayesian networks

— Applications: scheduling, tracking, medical diagnosis, etc.

— Think in terms of variables and factors

Logic-based models: propositional logic, first-order logic

— Applications: theorem proving, verification, reasoning

— Think in terms of logical formulas and inference rules

Search problems Constraint satisfaction problems
Markov decision processes Markov networks
Adversarial games Bayesian networks
Reflex States Variables Logic
-
Low-level High-level
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Problem Solving by Searching

‘ Goal-based Agent ‘

> A search problem consists of:

1. the state space
initial state

actions in each state
transition model
goal test

6. action costs

ok wDn

> A solution is an action sequence from an initial state to a goal state.

» An optimal solution has least cost among all solutions.

67 /954



Criteria for Search Strategies

Completeness Is the strategy guaranteed to find a solution when there is
one?

Time Complexity How long does it take to find a solution?
Space Complexity How much memory does the search require?

Optimality Does the strategy find the best solution (with the lowest path
cost)?

68 /954



Example — {587 Aidia)R

> 3MEHIA 3 NMEFATIR—F.
> B—REESHLFEEEN AN
> AR A8, EABELLER TRIAZDTFEFARIAZL
> BAEA?
States (x,y,z) with 0 <x,y <3 and z € {0,1}, where x,y and 2

represent the number of missionaries, cannibals and boat
currently on the original bank.

Initial State (3,3,1)

Goal State (0,0,0)

Path Costs 1 unit per crossing.
(3,3,1) - (3,1,0) v (2,2,0) = (3,2,1) — (3,0,0,) — (3,1,1) —
(1,1,0) - (2,2,1) — (0,2,0) — (0,3,1) — (0,1,0) —
(0,2,1)v(1,1,1) — (0,0,0)
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knowledge
engmeers

% Base
domain
experts

Data

T

Ontologies

offline : online
|
|
]
I
|
:"'
[}
4 [ Inference |
I
Knowledge +———"| Engine

S

sensors .

—  User

P Actions

users

\ 4

S
external

knowledge

sources
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Knowledge-Based Agent

Inference engine \ <—— domain-independent algorithms

Knowledge base / «<—— domain-specific content

—™ Knowledge-Based Agent {EFBELRIREE
> FZRRXIHFRAYPERRAL: A&, afEE
> IONFTHYRERD
> BITERE R HRAIZRAE
> HESHERAIEEE
> HESHREREAITEN
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B ERZE A

Bk AFHIRIVEN

BN GFENTEENEE
KBEA
KBF A

> AJ5EM: KBrA = KBt A
T KBEA = KBFr A

>

Expertise

conceptual model

& EEE

1t p(x)a q(X.Y)

then r(Y)

If u(X) A v(Y)
then s(X,Y)

I 1(Y)AS(X,Y)
then t(X,Y)

ACME
Inference Engine

Implemented System

C
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More Expressive Logic?

> ApRBIETIIR tH R SR SCApY
> BAZERHAES
LAMR AL B B BRE. ST . BR
2. KE: M. BRY. AT, BE RXF, Bk, & .
3.0 RE: PR A BE. BE. RIFIER. S .
> 1BIRZERIZRIA TR

Father(Father(alice)) = Father(Mother(bob))
Cousin(alice, bob)

B BFiCHRIE INRICRIE
Propositional Logic | facts true/false/unknown
Predicate Logic facts, objects, relations true/false/unknown
Temporal Logic facts, objects, relations, times true/false/unknown
Probability Theory | facts degree of belief [0, 1]
Fuzzy Logic facts with degree of truth [0,1] | known interval value
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Example: The Wumpus World

< enen ez | ML
ZBreazg —
SSSS. “Broe—"
Stench PIT ~ Sleeze ]
! o T
/Goa B~
SIS, ZBreazg —
Stench Ve g
B— B
ATl PIT T
START

squares adjacent to wumpus are smelly
squares adjacent to pit are breezy

glitter iff gold is in the same square
shooting kills wumpus if you are facing it
shooting uses up the only arrow
grabbing picks up gold if in same square

releasing drops the gold in same square

KB = wumpus-world rules + observations
Example: Vx(Breeze(x) < dy(Pit(y) A Adjacent(y,x)))
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Frame Problem

> HESRIEER: MRS TS RIFAZE?
> WIR “RIH—E, BBA B LRISIAE. IEENEERREN......
> representation: too many frame axioms
> inference: too many repeated “copy-overs” to keep track of state

> PRAHIERE: A5 RITaIFrRIRIFERIESMY
> BIH—E" — BEAREE? SASEKEETF? ...
> SFRIERE: 1TahARES | RITFSHANRESR
> R — BFRASERT T D8 FNSRESARWHER
g7 ......
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Cognitive Wheels: The Frame Problem of Al — Dennett

> BIEEE—RE, BEIMITSEARRET. BIERIFEETE—iE.

> HlERA 1 S: "EUHEEthZRE". KFe—EwEd. ... )BT

> HlERA 2 5 “— P EFRY, BEEREREWER" — Bt
EESTEIE? XERSBE? ... J8ET.

> HE8A 3 5 "REBIRAESERNE". ... AARESEX 4+
X7 EEEEEXRIG? RICIREXRED? ... JBkET .

» Forward’ — (WumpusAlive’ — WumpusAlive’*!)

» Forward’ — (HaveArrow’ — HaveArrow'*!)

» Forward’ — (WallYellow’ — WallYellow'*!)

Successor-state axiom:

HaveArrow'*! & (HaveArrow’ A =Shoot’)

77/ 954



B vs 1B

in(kim,r123). ki /\\
part_of(r123,cs_building). r \E|
in(X,Y) « ‘r0.23 >
part_ofiZ,Y) A cs_building \)D
ln(X)Z) . ln o o
part_ofte
* person(s)

!
$ in(kim,cs_building)

Figure: The computer takes in symbols and outputs symbols. The meaning of the
symbols are in the user's head.
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-I«IZI%_ - IEL‘JH\ZI:E\ - TH?%

» What is the meaning of ‘meaning’? (symbol grounding problem)
> How do words relate to objects? thought?
» What makes a sentence true/false?

proper name predicate sentence

l 1 l
sense of the proper name property proposition

l 1 l
object concept truth-value

1
objects that fall
under the concept

Table: Frege: symbol, sense & reference

Frege: The meaning of a term is a function/algorithm which computes its
denotation.

Wittgenstein: The limits of my language means the limits of my world.
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Learning Agent

Performance standard

s ' N

)

Critic ~4——————  Sensors —=
feedback
g
Y changes ) =.
Learning = Performance 8
element element =
knowledge 5
learning g
oals =
Ty
Problem
generator
\Agent Actuators / =

performance element (it represents what we have previously
considered to be the entire agent)

learning element (responsible for making improvements)
critic (evaluation of the agent's behavior)

problem generator (suggests explorative actions)
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Types of Feedback During Learning

A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its performance
P on task T in environment Z, improves with experience E.

> BE¥S) — BEARFCHA
> Learn the relationship between “input” x and “output” y.
— search for a function f, such that y ~ f(x)
> There is training data with labels available
Regression: learning f with real-valued output value
Classification: learning f with discrete output value
> Semi-supervised learning: also uses available unlabeled data, e.g.
assumes that similar inputs have similar outputs.
> FES
> There exist no outputs, search for patterns within the inputs x
Clustering: find groups of similar items
Dimensionality reduction: describe data in fewer features
QOutlier detection: what is out of the ordinary?
Association rules: which things often happen together?
> B FES — FEAREK

81,954



Meaningful
Compression

Structure Image

i e Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

e X Diagnostics
Visualistaion Rt Elicitation Detection

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
.
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised Supervised

Systems

Clustering
Targetted

Marketing Marlec

Forecasting

Customer

Segmentation L e a_ r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation Skill Acquisition

Learning Tasks
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| —_—
I .
1 Data with Labels
I G
N |
\
Error Supervised
Learning
Targets
,— " o —v . e s -
I Mapping

Input \
Data without Stﬁ:tes .
Labels Actions |
Y A
Unsupervised Reinforcement e
Learning Learning
Evaluations
Y L] .I
Classes Action .
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Supervised Learning vs Unsupervised Learning

UNSUPERVISED

SUPERVISED

® Class 1
® Class2
@ Unknown

1 1 1
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Supervised Learning

test point

P(xﬂ '@ y)

training polnts

’Tramlng Sample SH Learning Algorithm }—v[f
Loss Function

85 /954




Unsupervised Learning

/ Multidimensional \_
| Input [
| |
. P ¢ -
| € ¢ ¢ |
. ¢ ¢ © .
Ceveoo > |
I © (9
\ ]
e s -

Dimensionality
Reduction
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How do computers discover new knowledge?

Paradox of Knowledge
> |f you don't know it, how could you possibly recognize it when you see
it?
> If you do know it, you don't need to look for it.
> So why should we bother attempting to gain knowledge?

Five Ways to New Knowledge
1. Fill in gaps in existing knowledge
2. Emulate the brain
3. Simulate evolution
4. Systematically reduce uncertainty
5

. Notice similarities between old and new

88 /954



The Five Tribes of Machine Learning

Tribe

Origins

Master Algorithm

Symbolists

Logic, philosophy

Inverse deduction

Connectionists

Neuroscience

Backpropagation

Evolutionaries

Evolutionary biology

Genetic programming

Bayesians

Statistics

Probabilistic inference

Analogizers

Psychology

Kernel machines

89 /954



Learning = Representation + Evaluation + Optimization

> Representation: A model must be represented in a formal language.
> Defines the concepts it can learn: the hypothesis space

> Evaluation: How to choose one hypothesis over the other?
> The evaluation function, objective function, scoring function
> Can differ from the external evaluation function (e.g. accuracy)

> Optimization: How do we search the hypothesis space?

90 /954



vV vV v vV VY

v

Symbolists

The essence of intelligence is symbolic reasoning.

Logic, Decision trees

Inverse deduction can infer new hypotheses

Easy to add knowledge (e.g. as rules)

Can combine knowledge, data, to fill in gaps (like scientists)

Robot scientist: learns hypotheses, then designs and runs experiments

to test hypotheses

Impossible to code everything in rules

> Hard to handle uncertainty

Representation

Rules, trees, first order logic rules

Evaluation Accuracy, information gain
Optimization Top-down induction, inverse deduction
Algorithms Decision trees, Logic programs

91/954



Decision Tree vs Horn Clause

Length

long short

skips « Long
reads < short A new
reads « short A follow_up A known

skips «— short A follow__up A unknown

> We want a small and efficient tree

> Ask the question which is most informative
92 /954
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Connectionists

Learning is what the brain does: mimic the Human brain

Adjust strengths of connection between neurons

Hebbian learning: Neurons that fire together, wire together
Neural networks

Backpropagation

Can handle raw, high-dimensional data, constructs it own features

Hard to add reasoning/explanations

Representation | Neural network
Evaluation Squared error
Optimization Gradient descent
Algorithms Backpropagation
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Inputs

Dendrites

Dendrites
/

Synapse

Human Brain Neuron

Cell Body

Artificial Neuron

—

Activation Function
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v

v

Evolutionaries

Natural selection is the mother of all learning: simulate evolution

Evolutionary algorithms
Idea: “selection”, “cross-over”, and “mutation”.
> selection: selection of individuals according to a fitness function and
pairing
> cross-over: calculation of the breaking points and recombination

> mutation: according to a given probability elements in the string are
modified

Can learn structure, wide hypothesis space

Needs a way to ‘fill' the structure

Representation | Genetic programs (often trees)

Evaluation Fitness function

Optimization Genetic search

Algorithms Genetic programming (crossover, mutation)

95 /954



Mutate some randomly

t’l'

Create random Specimen Breed new Generation

=\ e
/- "

Find best Specimen

\

a
| 32752411 >_<| 32748552 |—{ 32748[b2 |

[ 24748552 [ 24752411 |+ 24752411

24748552
32752411

24415124 ] 20 26% | 32752411 [32752124 |+ 32252124
32543213 ] 11 1a% | 24415124 [ 24415411 F—+] 24415417
(a) (b) (©) (d) (e)

Initial Population  Fitness Function Selection Crossover Mutation

> INZRIBEIIE + ZRAIRENLIE
> SCHR (B¥HARY) [RAesstE 0 /954



AlphaEvolve

@ Human defines “What?”

sets evaluation criteria, provides initial solution
and optional background knowledge

Problem Improved
definition solution

g AlphaEvolve figures out “How?”

| |

I I rich context containing
i | past trials and ideas

| Prompt sampler |

| |

programs to improve proposals of
and act as inspiration improved programs

programs with quality scores
and other feedback

(

Program database |
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https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/AlphaEvolve.pdf

@ Scientist / Engineer

Prompt template Choice of existing . [nmal program
. . Evaluation code with components
and configuration or custom LLMs o

l l I [

| | |
& | & L,
: | Program database| Best program

Distributed Controller Loop

|
|
parent_program, inspirations = database.sample()

prompt = prompt_sampler.build(parent_program, inspirations)
diff = 1lm.generate(prompt)

child_program = apply_diff(parent_program, diff) }
results = .execute(child_program) !
database.add(child_program, results) :

Q) AlphaEvolve

NREHDNIRER. THMEAIEFIENAECE. AlphaEvolve FHEEILIBER. 12

TNERNE R E AR SR EEPRYEF RISRIRNE. KIESEERIER

TaERUMEN, XS RN BT CE RS, T O IF et T
iFo, o EHUETER RN INZE AR
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RHNERE: BB
(=) (=)

Travelling salesman problem: find the shortest round-trip to link a series of
cities.
99 /954



BEHUI — BN, BRERTA

> Bl SRBIFATIZRASEER/.
> IR [EREY). BIREEEL. (BRE.
> (EREERM: BMEEER. BIEER
> IR ERERILHERERER.
> RN BANZIRYISERI X &N, EREHERER LS
FIHERRSHIME.
> B EiEERR, WIRERIERIS ), B, B— Ik
s, AT RHLLREERE, ICERIENIETRR, REETT.
> BRI ARSI HRE L — A
> EHERERN: ENREIeYsE B RERERRES, i
BIEEIT, BEEEE k.
SR + ERIR
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Bayesian Learning

Learning is a form of uncertain inference: reduce uncertainties by
incorporating new evidence

Graphical models, Gaussian processes, HMMs, Kalman filter

Uses Bayes theorem to incorporate new evidence into our beliefs

Can deal with noisy, incomplete, contradictory data

Choose hypothesis space + prior for each hypothesis

Depends on the prior

Hard to unite logic and probability

Representation

Graphical models, Markov networks

Evaluation Posterior probability
Optimization Probabilistic inference
Algorithms Bayes theorem and derivates
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MHERZRTC

> EERELRTH, BFREREOEESN T BHRINEEER.
> EER, AMIXSEERTEMERE R T . 50% FHSHREE L EEE,
RE 15% FEHRERENRX B EEHR.
> TR XUFEEHHOR. BR EERIBHEARTIEHEREE
FMEEZRILLH], ATLAX MERIRBE—RIUINME.
P(H | D) = P(H,D) P(D|H)P(H)  P(D|H)P(H)

P(D)  P(D) ~ Xu P(D | H)P(H)
Problem: AISRRI&ILE HIV PR, (REERIEIG?

» P(H) =0.01%

> P(+ | H) = 99.99%

» P(+|=H) =0.01%

_ P(+|H)P(H) _ P(+ | H)P(H)
PH ) = =5 = PG [BP(H) + P+ | =B P(=H)
99.99 * 0.01

=0.5

= 99.99 % 0.01 + 0.01 * 99.99
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Example: JEff— TN ARSREHNAIELH]?

> Bix E— R HINERIELA.
> ATERBED, EABRERE D ANERERNRESEHMN?

LAY S —HGE T, ftH I EEARREREHEAMEECAE. W
RELEE, MEZERM 1; NRERE, HEIER 2.
1. BEHFIA v B %
2. (RREEHH?
EX: P(+) =P(-) =05, P(V |+) =P(x | +) =05
P(-|V)P(V)
P(-)
[1-P(+|V)IP()
P(-)
1- 2R p(y)

P(-)

P(/|-) =

=2P(V) - 0.5
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Problem: Why hot guys tend to be jerks? (Berkson's Paradox)

Ugly guys are just as mean as hot guys — but you'll never realize it,
because you'll never date somebody who is both mean and ugly.

i

Problem: A+ AENXAIBNEBERK, MEmHAYFIBMNAER?

(Simpson’s Paradox) 105 /954
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Learning by Analogy

You are what you resemble

Recognizes similarities between situations and infers other similarities

Generalizes from similarity

k-Nearest Neighbor, Support Vector Machines

Transfer solution from previous situations to new situations

Hard to do rules and structure

Representation

Memory, support vectors

Evaluation Margin
Optimization Kernel machines
Algorithms k-Nearest Neighbor, Support Vector Machines
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Nearest Neighbors

> Given cities belonging to 2 countries. Where is the border?
> Nearest neighbor: point belongs to closest cities
> k-Nearest neighbor: do vote over k nearest ones

“4

* o

@0

*
Categcry B
@ ©,

New Data
point

Category A:3 neighbors
Category B:2 neighbors

. 0

Category A

@ 107 /954



Support Vector Machines (SVM)

» Only remember points that define border (support vectors)
» Find linear border with maximal margin to nearest points
> If not linearly separable, transform the input space (kernel trick)

Q;\ Maximum
Margin Positive
Hyperplane
Maximum / * ¢
Margin N N ’ * ¢
Hyperplane \\ * 9

N Support
Negative Hyperplane VECT(LFS
()
RICEEXEFS. ...
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AEE IR

X,

> BEELEERYIEIN, EWAMRIB R Z RAZ T RETRZEHE.
FTEXSRIEITE 5 EERRILH AR

> SHEIRRIARE R EPEEREMIE.

> HlERFIFRREIR R ERE EEIER.
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Hypothetical-Deductive Confirmation

H—-FE
E
H is confirmed
» Which of H,Aq,...,A, does E confirm?
HANALAN---NA, > E
E
HANA{A---ANA, is confirmed
> Any true observation D confirms any hypothesis H.
H—->DVE
D

H is confirmed
> If E confirms H, then E confirms the conjunction of H with any other
hypothesis.

[D— DV E]

H—-FE
E

G A H is confirmed?

[GAH — H
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Instance Confirmation

» Basic idea: “E confirms H" means “E is an instance of H".
> Nicod: BEI—RESFFSI7HF “All ravens are black”. ?
> Hempel: BE—RB&Fo>73F “All ravens are black” 137?

-Bx A =Rx confirms Vx(=Bx — —Rx)
Vx(=Bx — —=Rx) < Vx(Rx — Bx)

-Bx A =Rx confirms Vx(Rx — Bx)

&

RiZEERE N JHHRNEEAERE &8 + £
1 HR— SEEEEAVEIFEFN (1/10000 2578, HREET);
2. AT REESS, BRE 10% 2R3, HREHSES.
> BE-RESBSXE FIFE S EE R
> NRFANCHF BN SFSERRRAIE SEE 9999/10000, BRABEI—

RESBSXE e SISEEEN"
> IHEXR BEEHEMRIR
> Goodman's New Riddle of Induction.
grue = green before 2050, and blue thereafter.

1. Are all emeralds green?

2. Are all emeralds grue?
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_______________

Black birds

> RIZH 6 METREHF. BB 1. BITREAFHE=RS.
> =t E FoE B SIEEERN M4 F R BE-RES

18" F=H G Fx BE—REEF
> IEXMRETR, F £X4F E, B G E63F F BURT4R.

P(E/\F) h11+h21
P(E|F) = - > hiy + hoy = P(E
(E|F) P(F) hi1 + hor + hig + hags — 12 (£)
?
PLEAG) _ k! > hy1 + hoy = P(E)

P(E|G)= =
(E1G) P(G) hi1 + hig + his »
11 54



David Hume 1711-1776

> “Reason and rational judements
are merely habitual associations
of distinct sensations or
experiences.”

Problem of Induction
Assiciation -» Causation
Belief -» Knowledge

Is -» Qught to Be
No-Free-Lunch!
Connectionism

Analogy

vV V.V vV vV VvV VY

Counterfactual Causation
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Hume

Proposition (Hume)

Induction is just a mental habit, and necessity is something in the mind and
not in the events.

Proposition (Peirce)
Unless restrained by the extension of another habit, a habit will tend to
extend itself.
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(=0K) — "9F" B & "KRpE" Rk

I R B—RMHRF F T IERTERT R, RIRIX
MNEFHFE EEFE T T HEEY, SIIFIRIZER
EYECHFEHITIERE, KT —MEARER: “FH
BIRTEX, BASE—NRE

EIE" R —NRIBER—EEKE, KIZEBRPF+—RKEE
MIRE. KEPH—BRFHEMRX NS, —BENR T
—FERBHIN FRERAN T BEFEFRBAER:
"BREFT—R ARG SEREDERENXS
MNAMTXNER, BXRT—REWREMEIG, RipEH
FIBE(IEIRERT .
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Leibniz-Wittgenstein-Goodman

Proposition (Leibniz)

Since for any finite number of points there are always infinitely many curves
going through them, any finite set of data is compatible with infinitely
many inductive generalizations.

Law of Continuity? “Nature never makes leaps. When the difference of two
cases can be diminished below every given magnitude in the data or in
what is posited, it must also be possible to diminish it below every given
magnitude in what is sought or in what results.”

Proposition (Wittgenstein)

Since any finite course of action is in accord with infinitely many rules, no
universal rule can be learned by examples.

Proposition (Goodman)

All emeralds discovered till 2050 are green, and blue thereafter.

Grue(x) & (t <2050 — Green(x,1)) A (t > 2050 — Blue(x, 1)) 116054



Mill — Homogeneous Universe

Proposition (Mill)
Induction can be turned into a deduction, by adding principles about the

world (such as ‘the future resembles the past’, or ‘space-time is
homogeneous’).
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(=1F) — BBk — =R F ISR FRIFE

T

E7x:
T
\EF01Z88) 295

Rk

T

HASHRT T uXidie, EPIUREARRIEEVEMA
ERIEIE), FRTERE—=SEUEEREARRE. EEXiehs

SRIEARE—FF!

RIS, BN KRIRERIREEMAY; IS, =24
BUIRREASIREKR, BiE3N, BEELRKAIR

ERELERIETW, EMMmIkZ BRIZIEREEIREE
&, FrA R 3o R BRER S PAERB R NiR.

ROZEKRAE— T, FlAI T — MERAIER: YIEEMETER

{REREEYIIEERERS EAYS)?
B AEARIE.
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Homogeneous?

Problem (What's next?)

1,2,4,7,7

Solution
A 1,2,4,7,11,16,. ..
Qpy1 =dpt+n
B. 1,2,4,7,12,20,...
Ap2 =aps1 tay +1
C. 1,2,4,7,13,24, ...
“Tribonacci” sequence
D. 1,2,4,7,14,28
divisors of 28
E. 1,2,4,7,1,1,5,8,...
m=3.14159... and e = 2.71828... interleaved

119 /954



Epicurus vs Occam

Proposition (Epicurus)

Keep all theories consistent with the observations.

Proposition (Occam’s Razor)
Prefer the simplest theory consistent with the observations.
> Entities should not be multiplied beyond necessity.
> Wherever possible, logical constructions are to be substituted for

inferred entities.
> |t is vain to do with more what can be done with fewer.

> Less Hypothesis vs Less Entities?
» Can Occam's Razor reduce overfitting?

» Simpler models are preferable for other reasons
(e.g. computational and cognitive cost)

120/ 954




Why Simplicity? — Gestalt Psychology

1

P TN

No ¢ /% Yes

prdsS

Figure: Gestalt Psychology
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Why Simplicity? — Gestalt Psychology

122 /954



Gestalt Laws of Organization

(a) Proximity (b) Similarity (c) Continuity
L
(A " (a)
|
‘VA A
’ \/
C 9 ®
(d) Closure (e) Law of Symmetry (f) Law of Pragnanz
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Why Simplicity?

God does not play dice.
God always takes the simplest way.
Subtle is the Lord, but malicious He is not.
The most incomprehensible thing about the world is that it is com-
prehensible.
What really interests me is whether God could have created the
world any differently; in other words, whether the requirement of
logical simplicity admits a margin of freedom.
When | am judging a theory, | ask myself whether, if | were God, |
would have arranged the world in such a way.

— Einstein

> Principle of least/stationary action
> Noether's theorem
L
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Why Simplicity?

Computer

program _— output
i Deduction
axioms —_— theorems
. e Calculations i
scientific theory _— experimental data
Decoder ..
encoded message —_— original message
Universal Constructor .
software physical system
Pregnancy X
DNA _ organism
Mind of God .
Ideas _— Universe

Remark: SZZFAVERFFIEEHR. FERHHREBLAITUUIER
B, mERAEEXRERRI, MiHSHVFET/ER.
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Popper — The Logic of Scientific Discovery

falsification

Proposition (Popper)

> Choose the simplest
generalization that resists

experiment falsification.

problem
> The simpler a hypothesis, the

easier it is to be falsified.

> Falsifiability is as subjective as
hypothesis simplicity, there is no objective
criterion.
HAALAN---ANA, > E
-E

, A -
CHV oAV VoA, Duhem-Quine: Holistic Theory

> Probabilistic Proposition
-H? -A17 ... =A,;?
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vV v. vy

EIRNZvs]cs

Alice #1 Bob &7 NM&FIY Carly. Carly EMRIZEERAYIKENR, 58
—RIZIKERFREERE, RIS EERRY.

1. Alice: BT EPERIZEEIRATKER.

2. Bob: FTEHFEBERIZMAIBE—R=ZIRIKEIZ ALK,

XRMNEEEBRT LABERFIE(AR) “BARE"
BINRFEHFRE Carly X—NLIB?
‘IR BE SR
FHFENMRAE—IMER.
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Keynes — Carnap

> Assign to inductive generalizations probabilities that
should converge to 1 as the generalizations are
supported by more and more independent events.

— Keynes

> Observational events provide, if not proofs, at least
positive confirmations of scientific hypotheses.
Chose the generalization that confirm more
evidence.

— Carnap

128 /954



Philosophy of Induction

What is learnable? How to learn?
How can we know that what we learned is true?

History

Possible Worlds/Hypothesis (Epicurus/Leibniz)

+

Homogeneous Universe(s) (Mill/Turing)
+

Simplicity Criterion (Occam/Kolmogorov)
+

Prior Belief (Carnap/Solomonoff)
+
Update Belief (Bayes)

U

Convergence to Truth

P(e | h)P(/l) {(e)—o0
2 P(e|h)P(h)
heH

P(hle)=

129 /954



MDL vs Bayesian Mixture

. - ~ .
Induction _~ ~ . Deduction
7 ~N
e ~N

e
// \\
~ ~

'S
Predicti
@ rediction @

When solving a problem of interest, do not solve a more general problem as
an intermediate step.
Intelligence ~ Science ~ Finding Patterns ~ Compression ~ MDL ~ Prediction

130/ 954



> FTEEEERRIERY, (BERLEERA.

> ERESHIREH IR E S —REEE.

> EMAIEREN: 5558 (W) SHERT.
— No learning is possible withou some prior knowledge.
— EM, ERER (EF-BERICE. B-REH17])

> R IARE— IR R ERRTITE #BETR
— FENn3E
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Hypothetical-Deductive Machine vs Inductive Machine

program

|

inputs —

Hypothetical-Deductive

Machine

— outputs

inputs —

outputs

l

Inductive
Machine

—— program
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. ML as an Oracle

x —L oy

X —».—» Y
X —».—» Y

. ML as an Induction Process

D ——<Induction Process >

. ML as a black box

. ML as an Induction box

X o 71

g il

. ML as an Induction Algorithm

D —— DNN + Objective

x /]
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Bayesianism

How to choose the model class and prior?
» choose the smallest model class that will contain the true environment.

> choose the priors that best reflect a rational a-priori belief in each of
these environments.
1. Convergence of Bayesian mixture to true environment.
2. Confirmation of “the sun will always rise".
3. Invariance Criterion.
reparametrization & regrouping invariant.
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Kolmogorov Complexity

Texts in Computer Science

Fourth Edition

@ Springer
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“The most important discovery since Gédel was the discovery by
Chaitin, Solomonoff and Kolmogorov of the concept called Algo-
rithmic Probability....

It should be possible to make practical approximations to the
Chaitin, Kolmogorov, Solomonoff theory that would make better
predictions than anything we have today. Everybody should learn

all about that and spend the rest of their lives working on it."
— Marvin Minsky
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,_\
©

A ERE X—iE T, BEBREEK

EE A EE?

“BA-RISHIT]" JINEEF?
HFENARXMEFMAZI T
I ABNNEFETRHREEFRY?
#*H "HR RRRE W7

ZIREIR “Bl5" 19?7 “FJR]" 157
E4ERNEERE?

"BRIEIS" Jo AMELATRER?
KIESEER "R ATLARIRG?
EBAULKESREER BRI BIE?

© ® N U AW N
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ERAIE) LT

(IN=E17)

WERSS, RARRE MREAR 27, P —% BELIEF 2
TRillzEgink, B—a I8 — = BTE, JIE: =" F $=
E, JIE: =" . EFERIMRARE, 3EERXE: JUER! JUER! |
TS E, EREAD, A HRENZ, EMEEEL.

B, EQIERER B REIR, SFRERIR, AZAR . KBz BHF
FH: "R TMFER, ~Uwh? BREEES, F=<hBaE D"

Pattern %Ui%& Oa 1’ 27 39 47 5’ 63 7’ 87 99 107 Tt
PZER

Algorithm
Numeral —————— Number

“BE" AETF EE"

“HE RRESEKNEFABEETN.

B Bl EUE" BOBRET numeral — number EU]ITERYEREL

“EEE WTEE! — AR BT 4 ‘RF EE/Y 8"
7 vs 10000 vs 111---111 vs 1001110010000 e,

N



O Nk wWwNNE VY VY

01010101010101010101010101010101
00100100001111110110101010001000 {n}
01010011011110110111010101000001
0.1234567891011121314151617181920

What is regularity/pattern/law/principle/model /hypothesis/theory?
What is phenomenon /data/experience?

What is randomness/noise?

What is typicalness/unpredictability /incompressibility?

What is simplicity/complexity?

What is learning?

What is beauty/interesting/curiosity /novelty /surprise/creativity?

What is intelligence?
139/ 954



Andrey Kolmogorov 1903-1987

vV VvV VYV YV VYV VvV VvV YVvYY

Measure Theory

Probability Theory

Cohomology

Chaos and Dynamical Systems, KAM theorem
Turbulence

Fourier series

Kolmogorov superposition theorem
Intuitionistic Logic, BHK interpretation
Information theory
Kolmogorov-Uspensky machine
Kolmogorov complexity

Kolmogorov structure function
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Kolmogorov Complexity[LV19]

Definition (fl/RESHSZKEHRIE)
1:(63) &= b i) 8 AG2) Sl

Hep v 2EASREE R

“simplicity”

Ky(x) < Kr(x) +cr

PRSIFUTMI
<& [0 1]:JoJo[1Jo]1]o]o] }i“I’“t
eeetf ' ' ' 1 1 tapc
reads bits “randomness”
sequentially
Computer dcVn i K(x1.,) 2 n—c
(including

work tapes)

Regularity ~ Short program
No short program = Noise

writes bits

_".Ecqucntmlly

<< lofolt] 1l [+ [2 ]+~

= SR output
tape
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Kolmogorov complexity by ants

> Feeder contains honey.

> Matches float on water to form

the tree maze.

> Scout first finds honey.
> Scout returns.

» Scout communicates with soldier

ants, time recorded.

> Scout is then removed.

» Matches replaced to prevent

marking of the trail by odorous
substances.

Soldier ants go for honey.

Feeder

TN
ol

When the path to feeder has lower
Kolmogorov complexity like “LLLL",
ants communicate faster.

142 /954



vV V. vV vV vV VY

The case of cheating casino

Bob proposes to flip a coin with Alice:

> Alice wins a dollar if Heads;
> Bob wins a dollar if Tails

Result: 0000000000... 100 Tails in a roll.

Alice lost 100. She feels being cheated.

Alice complains: 0'% is not random.

Bob asks Alice to produce a random coin flip sequence.

Alice flipped her coin 100 times and got 01001101011100001 ...

But Bob claims Alice’s sequence has probability 271%° and so does his.

How do we define randomness?

143 /954



vy

v

v

Alice's Revenge

Remember Bob at a cheating casino flipped 100 heads in a row.
Now Alice can have a winning strategy. She proposes the following:

> She pays 1 to Bob.
> She receives 2100-K() in return, for flip sequence x of length 100.

Note that this is a fair proposal as
9-1009100-K (x) _ 1

x:€(x)=100

But if Bob cheats with 0'%°, then Alice gets 2100-10g 100,
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—_
w

© oo NS OaRwWDNDE

Properties

K(x)SK(x | £(x)) + K(£(x) £€(x) +log" £(x) < €(x) + 21log £(x)
K(n) < log*n < logn + 2loglogn

> 27K <1

K(x|y) K@) <K(x,y)

K(xy) K (x,y) SK(x) + K(y | x) SK(x) + K(y)

K(x) K (x,K(x))

K(y|x") EK(y | x, K(x)) where x* is the shortest program for x
K(x,y) ZK(x) +K(y | x) ZK(y) + K(x | y*) ZK(y,x)
K(x.y12) ZK(x|2)-KO»|xK(x]2).2)

K(f(x))<K(x) + K(f) for computable f

. K(x)% —log u(x) + K(u) if u is lower semicomputable and

2 H(x) <1

Y 27K X9-KO) if £ is computable and K(f) = O(1)
x:f(x)=y

. 0<E,[K]-H(u) %K(ﬂ) for computable probability distribution u



Characterization of “Surprise” — Shannon Entropy

> Information is surprise. (FEFRAIRENE)
> Entropy is total expected surprise.
> Entropy is a measure of uncertainty.

RIRIFFEREL S - [0,1] — [0, o] HE THIFM:

1L.S(1)=0 — WARRENEARFEANRS "
2. p1<p2 = S(p1) > S(p2) — MRS HFEATRIRT
3. S 2 p BOESIREL — 1R BRI
4. S(p1p2) = S(p1) + S(p2) — W7 EHEN AT ESEN

> (BSOS SRR —RAE A | SRR
s hH=1
> & p=27" BBA
S(p) =8(27) =xS(27") = —log p
> “HIRRIZE" TG
H(p) == )" p(x)logp(x)
xeX

Remark: HU28 —EELTHIMEE BNSRIEERT ©
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IT vs AIT

Non-prob. statistics
Non-prob. thermodynamics
Inductive methods
Logical depth
Incompleteness
of mathematics

Statistics
Thermodynamics

] Philosophy

[ Shannon's IT [ AT

(Occam’s razor)

[ Entropy [ Complexity

] ] Foundati f
/ Probability \ / Computability \ oundations o

Theory Theory mathematics
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=S d

A:B::C:D

» A:B::C:D — A:C::B:D
KL LEE?

> HF: EMIMSMEEE functor

> R FE

> ZA: B

> T EEEL

> HBEES: TBES
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Kolmogorov Complexity vs Analogy

A:B::C:D

The best analogy is the one that makes (A, B, C, D) simplest.

X* = argmin K(ABCX)
X

Example:

talk : talked

fish : gills ::
fish : swim ::

woman : wave ::

horse : legs ::
earth : sun ::
abc : abd ::

‘pPpqgss’ = argmin K (‘abc’, ‘abd’, ‘ppqqrr’, X)
X

:: solve : solved

humans : lungs
bird : fly

tree : sway

car : wheels

electron : nucleus

ppAqrr : ppqqss
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S BRI A"

A:B:C:X
PR EUE B — BR
X" := argmin K(ABCX)
X

argmin {K (M) + K(D | M)}
MeH

K(Ms)+K(A | Ms)+K(B | Ms, A)+K(Mr | Ms)+K(C | Mr)+K(X | Mz, C)

~. .. ModelM = .
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(2FERE)
L. BEWBEE, B 5—F—AisE
2. EH: "HEEHEL? XH: FTAWL, BEF"
3. FREBFH: “FABREEF?”
4. BEFEFENE: HEZ, BEERNARG, ET IR, HiEE
1, HXBRARE. FLAAEE? KEFE. SEEFTASR NENE,
BREZKL, EREHER

HB
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Landauer’s Principle

v

Information is physical.
Landauer JRIE: 18R 1 LERHSRSMINEHFERZED kT In 2 A9
=
Reversible computation is free.
The ultimate thermodynamic cost of erasing x is reached by:
> reversibly compress x to x*,
> then erase x*. Cost K(x) bits.

The longer you compute, the less heat dissipation.

£ x,y ZIEEEW, FrEENR/I\EER:
E(x,y) :=min {{(p) : U(x,p) = y,U(y. p) = x}

v

vy

vy

Theorem
> E(x,y) = max{K(x | y).K(y | x)} =K (xy) - min{K (x), K(y)}
> For any computable metric D satisfying ., 2-D(x.y) <1, there is a
constant ¢, such that for all x,y:

E(x,y) <D(x,y) +c

153 /954


https://cs.uwaterloo.ca/~mli/fewshotlearning.pdf

vV v v vY

Remarks: Zero-Shot Learning

E(x,y) is optimal information distance — it discovers all effective
similarities.
If the cognitive distance we are born with, D(x, y), is computable,

then it can be approximated and replaced by E(x,y), because if
D(x,y) discovers some similarity, so will E(x, y).

might as well generalize it to between any two objects
Distance between “War and Peace” and “Harry Porter”
Distance between “daddy” and “mommy”

Distance from a junk email to a normal one

Distance from a query to an answer

Distance from the current output of a neural network to the correct
one

All animals are born with ability of measuring 2 distances: find food,
not become food

Many things can be learned by just seeing one
154 / 954


https://arxiv.org/pdf/2308.06942

Maxwell's Demon & Landauer’s Principle

A B A B
. .. .. [ ")
.. .\ ) L) (3 Py
. |®8 o o *

Figure: The demon turns entropy into information, the
information-erasure operation turns information into entropy.
In the course of ideal measurement on an equilibrium
ensemble, the decrease of the entropy must be compensated  Figure: Destroying
by the increase of the size of the minimal record, and vice information generates heat

versa. AH ~ —(AK).
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Universal Similarity Metric

> Question: When is x similar to y?

» Solution: x similar y iff x can be easily (re)constructed from y iff

K(x|y) =min{¢(p) : U(p,y) = x} is small.
The normalized version of E(x,y) is Normalized Information Distance:

max{K(x | y),K(y [ x)}
max{K(x), K(y)}
K7 (xy) — min{Ky(x), Kr(y)}
max{Kr(x), Kr(y)}

NID(x, y) =

d(x,y) =

H18R K(y) > K(x), W NID(x,y) = 1 - L&)
T : Lempel-Ziv/gzip/bzip2/PPMZ, or

ages containing ‘x’
K7 (x) := —log Pgoogle(X) Where pgoogle(x) = # Pag ntaining Xx

# pages indexed

> compute similarity matrix (d(x;,x;)),;

> cluster similar objects

156 / 954



Contents

Universal Induction
Algorithmic Probability

References978

157 / 954



Ray Solomonoff 1926-2009

=l oy o ESETRE
4 L3 1] . .‘- o« s
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Figure: Solomonoff



Algorithmic Probability

Definition (ELEHTER)
M)= > 27W

p:U(p)=xx*

Hep v ZiBAREEIR.

M(x) 2 €(x) = Z 27 K0y (x)

veM

Hep M= {v1,v2,...} BFAIHERNFNERES.

2_[(17) > 2—5()6)

p:U(p)=xx
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Not only does God play dice, he always throws it onto the
UTM!
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Aspect 1 — Popper’s “Falsificationism”
R T R—HF “Fll” vs IRE/R—PD— “UEHR”

falsification

p

problem experiment

hypothesis

H: truth « simplcity/generality/aesthetic/utilitarian/ .

Make a weighted prediction based on all consistent programs, with short
programs weighted higher.

161 /954



Aspect 2 — Deterministic vs Stochastic

M = {v1,vo,...} lower semicomputable semi-measure.

€)= Y 2750 v(x)

veM

M (x) 2 & (x)

Wy = 2-K() s reparametrization & regrouping invariant.

Wgr = Wffl(g’) - 2_K(f71(0’)) éz_K(g’) éw’g,

Wer = 9K (0) X 9=K(0) X,
0:F(0)=0"
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Aspect 3 — Frequency Interpretation

M(x) =Y 27D [U(p) = x+]
P

Y 2P U(p) = xx]

- lim p:t(p)<n

ey on

o et =n & Up) =x+ |
NJI_IEO on

. . . |consistent worlds|
algorithmic probability =

|a|| possible worlds|

Carnap — frequency of phenomena — i.i.d
Solomonoff — frequency of causes — arbitrary order Markov chain
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Aspect 4 — Solomonoff BB ZEFE

> KIBESHEEL LLM 7E4 Next-Token T

> EELHFUER L KANERT, HAFTTNSER?

> BETFEERER M BTN M — u! — LLM FRNEEETR M!
1. B5KIR: BAAST—M vs Bl EM

2. BINE: FI RBEREBEFEEE" 19 NREST”

— break “block uniform”: bias non-random functions
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FUM Next-Token via EAMEER

> -F_/I\ii%{_i_/A 17 2’ 2’ 3’ 3’ 3’ 47 4’ 4’ 4’ ?
3 2-t(p)
M(12233344445)  p:U(p)=12233344445x

M(1223334444) ) 2-((p)
p:U(p)=1223334444x

Remark: {REZISE + BRIB + BR + Rl/RESHEX + WHHL
E(xs | x<t) = Z WL,V(xt | x<t)

veM

and wg =2 KO

M(x11 =5 | x1.10 = 1223334444) =

wov(x<r)
2 wyv(x<t))

- AT ER
X<t = (Q0,A0); (01, A1); (02, A2); .. .5 (Qr-1,Ar-1)
— WFF—NTE 0, IRERE?
E(AL ] x<00) = ) wi_ V(A x< Q1)

veM

where w}_ =
<t
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LMM — Transformer? Yes and No

Output
Probabilities

Add & Norm

| Add & Norm I:

(el Mol Multi-Head
Feed Attention
Forward Nx
Nx Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A ) A y)

\ J U )
Positional A Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

YFF Transformer B9
JmiSes. fRRSES. F
I=walilk: NEAvA=—E= TN
FRUEE CoT, ETFA
ERIRAREFES]
RLHF 343%. ETFX
F3). 1B5SHA.
Scaling Law ZFZFEE(K

KNESERENIE?

166 /954



ST RRIRNIESEE

hy = ¢o(x1:1)
exp(xs, po(x</)/T)

po(X; | x<p) =

%eXp<y,¢e(X<t)/T>

n
0 = argminE,, -, Z —log po(x; | x<,)]
0

t=1
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A e A

polxi | x<) vs £ lxa) = ) wi vl lx<) vs M(x | x)

veM
KiBSIRE KAt
AL 2% EF=E
NE ¢ B p
FEHVEERE P& SGD (+ iE2) Uit 6 | Solomonoff Fie B SFTBTER

Problem: KiESH&RE pp AJLABIFRIAMRR M AIAISEIRID? 65 o



B Bl FEER) |40 RN T FofRIESE [ Del+24]
> EARRRSETLUETTN Next- Token I RUERN N THRESEE.
> BE0 LALLM {ERTIRESEES ((EREARGRG) MEERTEhTH
EEEE
> BIME LM BORSSURE (SUREE x.., ELSEDT 1 SRS

U

== Lo
ARZ ), FTFRAIMELA LLM YERTCIREYERS (EREATR)
HE4ER.

Loss (:u’ p9) = H(,U, pG) = Ex1;n~,u lz - logp@(xt | x<t)]
t=1

—logpg(x1:n)

LIS pe BITESLS T u BY, Dri(ullpe) BEITF 0, TIRITEY
—IREKRE H(p) B2FIRBIKENTR.

v

H(u,po) = H(u) + Dir(ullpe)
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BRI

1 1 0.45
_ P(X|A)=0.2
(X)=0.25 bo1 0.36
b1 0.75
P(1)=0.3 0.25
- 0.45 P(1]A)=0.6
b00
Lo (A)=0.45 0.09
P(A|A)=0.2
0 0 0 0
b0 b0?

b010

b001

0.125

0.36

P(X|A)=0.35

0.266

P(I|Al)=0.45

0.144

P(A|AI)=0.2

0.09

b010

b0101

b0101010

0.3125

b0100

0.36

P(X|AIX)=0.2
0.341

P(I]AIX)=0.2
0.322

P(A|AIX)=0.6

0.266

b0101010

Figure: Arithmetic encoding of 'AIXI" with a probabilistic model P resulting in the
binary code ‘b0101010". We iteratively divide the interval I = [0, 1) according to P
and select the sub-interval corresponding to the observed symbol. To determine
the encoded output, we iteratively split [0, 1) in half, and assign a binary code to
each sub-interval until it is fully contained in I.

» Encode(x;, P;) = z; where z; takes up —log P;(x;) bits.

» Decode(z;, Py) = x;

FHERIBAYINEHTISTIHEER. In

Hepl" gatigie: A, s RRE

A, AKEEERIEH: " ARNBERTE
Est b E—ra
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Understanding is Compression

Original data Token sequence Posterior probabilities Compressed data
~ B
Text == @ I ' 'F —
. ———
Image m Tokenizer ISI;"::::;’; u(ti = Wjty...tioy =[CT=]) = 0.20  Arithmetic
i —— ELEE —, it = Etrontios =B = 0.50 —SnC00er 0101
udio 1taectn u(ti = Ejtyo..tiy =HETE) = 0.30

Video [

Recycle 1 times

Remark: The compression ratio should go up with better approximation of
Solomonoff induction and better understanding of data.
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https://arxiv.org/abs/2407.07723

TUNBPELE, “BR-RHIT]" FInEsER]?

> KNIESHEETEM Next-Token TR

> EEXLD 1 FAPERT, HAFFTNSER?

> BETFEERER M BTN M — u! — LLM FRNEEETR M!

> HARRERAIESE? Kolmogorov 2% K (x)!

> BELAMEERREIERIFRITIN M (y | x), BIRE, B x 2/, y RE
B ER BE KO | ).

M(y | x) ~27KOM

R |
BN —M: vs  —— FEFTN
SRR
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BANGRID vs B-RIBHIT] vs R/INEIAMSERNY

> ERIESCRIMERD D 1, x BIBEARREIK ((code(x)) = [-log u(x)] + 1,
ST RKASEBIT H(w) + 2.
> WNRESCRYSD T 1 RFD, WNRFRAIFE o HITEARLRD, LR x BYES
K7
—logp(x) + K(p)
> /MRS ERR MDL:

pMP = argmin[-log p(x) + K(p)]
pEM
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E4ERNZ 1
> WIR/MEAKER MDL BfE:

n
K(x1n)  min (K(6) + 21 ~log pe(x; | x<r)

SNRERITUREAR MR
D, logpe(a |xa) =0
t=1

B4 K(6) (IENMEIR) SR, NTFEEIE, iZHHEE.
> ZINBEFARNNGENER (Ici2), MBI EFESTIXI)I%k
ELSMIESH RSB TRARERRNZW. [FHENZL.
> RS HYT?
> MR, FEFSIE) M K, rTRE RIS RENEEE N F=E
BRREVEREFERSHER.
> BKRIMERERARIEESE ERETSSCIN B IFRIRAER.
> (BT EENEIEERR, WEANSSEEIRENMRFE.
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NEGERIMBE “ARFS"
> EADRRIRSRAE 2
K(x1,...ox) = > K(xi | paj)
i=1

> EETFXIFRME K(0) + K(y | x) ZK(0) + K(x | ), 1RIE “BIEDRE
K REEFEISRRIRFME.

> AT RDERBKREFNE, FIFE "ERRIZERH

i=1
> WERHE Pc F0 Pric BHEMSL 1(Pc; Peic) 20, BBA

K(Pc,g) K(Pc) + K(Pgic) $K(PE) + K(PciE)
2Remark: \EGERIMBELHEFS:

. K(x,y) ZK(x) + K(y | x)
BEES K(y | x) FIUSE; (BEESESR xy, WAEBUEE K (y | x7).
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(/LAY “prompt”

Problem: + AR x* BFESHES D 1 FIRIAT “Prompt”?

x* =argminE, [-log M (- | x)]
X

ZARY,
X' = arginin DgL(u(=) 1M (= | x))

Remark: {155 1 EWEERINT 1(y) = 1, &IUEY prompt ILLESH

K(y | x*), ROBET R4 LLM BILUBITESRES « 465 Prompt
A S LI VEBEE ).
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Solomonoff's Completeness Theorem

M'(e) =1

M,(xlzt) = M/(x<t) M(xlzt) _ M(xlzt) 1_I M(x<,~)
i=1 e

Y M(xa)  M(e) M(x<;a)

acX X

Theorem (Solomonoff’'s Completeness Theorem)

For any computable measure u,
(o) , 2 o
P uea) (MG xe) = 1 5<)) < DlIM) K () In2
t=1 xlztEXt

Remark: M’ is universal predictor. The only assumption made is that data
are generated from a computable distribution.
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Discussion

> AR LOR R FRING?

> RIEERATIUER N TR

> TASHEER? T ERRNZECHIFRES, MU ZEES
AERIERIEE?

> BRI, EREe i
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At AR R ER FRIZE?

BRI HEMEIE [Sol78]

XSFAERETH A0 1, 5 1(A) = 1 BOSEE A € X', 58 vx e 4,
> (VORI - VEG ) 220
yeX

At AR EERATRE? [Mal20]

X FAER AT EAOME 4,

Z8DY (‘/M’(y | %) = Vu(y | X))2 S 0p 2 27kW
yeX

1E§iﬁimg—§%§$5'ﬂ M (otuture | Opa‘st)

A ARG E P HREERAT M —
Remark: STE—HHRHAR, TR BAls B
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5 (AU /BERE) MEITISR? — “it from bit”

RN “FHaREmSm": ANBALLE!

L R ERHAFEFH?

— RAFN: BREEREE, &N, RRUERERRT “HR

EFSeFERIRRSEL 28R

— TANRMELEM, FAITMIZIAERR 2 AR 3.
2. WF—HZISMEREITA?
BIRMERZREARR. M (0future | Opast)
3. AR TAETHY?

A ABAVEFEFRIHFRZEEFAI? M —
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BTHEIC LRI AN 25, "8 RHARF?

Z T BR—UERTFBRREFPAIERD. tHEFERN, R T—
HEBITFEY. e E T BCRIRERYD, ... FAHLER T FIURE:

L NiBFEMERT 5 EX

2. NigFEMERH......
ERYIIRS TYIES, WAL TRUEREMRE TR, HNERENR.

- -

-

& 0 D i

INHITE M < iR
B E ERT SRR RE BT 85, SIAREATAR B
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S BRI A"

A:B:C:X
PR EUE B — BR
X" := argmin K(ABCX)
X

argmin {K (M) + K(D | M)} (MDL)
MeH

K(Ms)+K(A | Ms)+K(B | Ms, A)+K(Mr | Ms)+K(C | Mr)+K(X | Mz, C)

~. .. ModelM
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HEEANR? — [ RE—RN

FRISRET LRI B4R ?
f&Bh B HEHT EREESL" RIS H
R 1 2 o NIRA, BBA

K(u) +K(o | p) <K(o) +K(ulo)

HFER
|
REI? | | ESRRE?
¥
WMER o

U—0 or p<—o

Remark: MIREEIRFIREHXTRANNSR? BENRESRFKZIENE
E{FREEIRER.
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TRNED =4, FulleweEss, EERGRZ]

RIZIRIEEFRIE— ARG, XABEE T IEESERAIETI.
REARIABLURITEZS ABRBISHNLR. ESFOR
E—I, MRBTRERBLZRNETTE BETHEEXAR,
RIEES: W FEREXNSH, BIARNRFE ()"

— llya Sutskever

> BATREEGR. . XASSIESEH S HFIEEIARE.

> SESHLESEEFAIEN o BARRR, BT SRS RBES
HUEET I ERIHHFIRE.

> NTESE LLM ?—SE’JESZZISEEEN%JE’J%W%%_-

@%‘i@ ﬂ?ﬁ_ﬁi - %,

%
Y] £ ‘@

184 /954



SE(ER: [E48EPEERE? MFUZEATZ, A LLM | Agent

> FUBDIESE, E4ERIEEEE? — LLM L&‘/ &EIEE&MJ:E’J T
> %ﬁg Agent F’%’Z:FE’Z%D Ej] {EUJHT EI/ &ZKE’J.%II:ET

> LGRS ERRERRAY, Agent B _JL,LET;: SINERE, BRI FES
M EATEIFIRBIRIR IR ZIRTR AR E

> EBLRUFIP, INGPAREFE EEX)U%SEUEI’mem ¥, SR
SIAIERIED.
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Phenomenal World vs Noumenal World

1. Phenomenal World: things as they appear to us

2. Noumenal World: things in themselves

> Kant argued that space and time and causality are part of our
perceptual framework.

> Kantian hyperpriors is how we structure our phenomenal world.

> Kant's Copernican revolution: objects must conform to our cognition.

Figure: Reality can be experienced, but it is not possible to totally express it with
language. The experience of the world is a construction, constrained by external
data and internal beliefs, priors and assumptions.
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> A AP EHERF?
> A AR SR

> A A ROt T A AR Y
> A AR R O RN E
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NEWNX, IRBREIA, HEFRISE

> HAR ‘R — [ERENER.
— FRMEDESE, TR, IR,
> HAR “ NERIEN?
— BB RAREESN ER B REREE.
— REBVEE NIRAE RS,
> IXANEER VG
— 2 g
> EEIFE AR
— TIEYE, FAERE.
> HES TR 71D
— IAVKTAEE! B, SRR X
— | ARESE SRR E |
A e e
1. UESE? El? RiRER, BEFE? SUm™E ERSEEHIE?
> Gl ol
3. “BREIS” ATLMRRRIG?
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AR “BEFIS” vs KIESRER “Am”
> REZHFYEBRRIAREAY.

P({xeX" K <1—5}) <9-on
n
> Ramsey: STEHITTRFEAETEERY!
> TIRREFEE: —RBEFEFIEM EMEaEEE, RENEEBK,
MEFTENHSP LI (TAIBERES)
> Chaitin: XRNAEE Goédelian g T,

#{x :TrK(x) > f(x)} < o0

> WFIUVFRERIBETLFSY, EIRIREHLIETIZEARIERA.

> B "B "BAE. REVUFSITRRY el

— 18 Rl S "BAE B RIS, XMERRR

"R BRE LM EFE4 Rz, BiER "B, i@ /Y
X5, AIREE "ol ST “BEAE", FRLAARATBEsERR.
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ERSFRNZIX & BIREE AN

Grue(x) & (t <2050 — Green(x, 1)) A (t > 2050 — Blue(x, 1))
K(Green) < K(Grue)

WREEXE / Al EHIA:
> EFTERREH AT, BIEEFIILRF, B/REEXMAVEE Nos
AT ERHUAKINAIEE Noar-
> FrLMRESEREIRE— R SiHRIR R G S AR ?

K(,unat) < K(VBB)
M (ygartn | X) > M(yBB | x)

D& HROIERR DI ZRICNIERY.
Bleen(x) < (f <2050 — Blue(x,1)) A (t = 2050 — Green(x, 1))

RSN AREEN AGRAN. 43 «— & — B4

T
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The Ends of Evidence
Humans can probe the universe over a vast range of scales (white area), but many modern physics theories
involve scales outside of this range (grey)

Alomic Human  Size of  Size of Size of Size of Other
Shings? scale height  earth sun galaxy observable  universes?

& # 1O 00 @

O 11 T T T T 1171 1 *

10%em  10% 1020 IO“’E 101 105 1 100 108 1qe 101 102 105 ¢ 10% 103 10% 104

IHC  Microscope VYisual Telescope
reach reach reach reach 191 /954




Are Conceptual Frameworks Necessary for Theory
Building?

\

';,t
LY

ok w -

1,3,5,7,9,11,13,15,(?)
0,1,0,1,0,1,0,1,0,(?
1,1,2,3,5,8,13,21,(?)
1,4,159,26,53,(7)
12,23,35,47,511,613,(7)

(7111,0), (8809,6), (2172,0),
(6666,4), (1111,0), (2222,0),
(7662,2), (9313,1), (0000,4),
(8193,3), (8096,5), (4398,3),
(9475,1), (0938,4), (3148,2),

(2889,7)

> “Hedgehogs” use a single idea to view the world.

> “Foxes” view the world through multiple, sometimes conflicting, lenses.
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Gestalt Switch? Mixture?
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All Ravens are Black! v/

Theorem (All Ravens are Black)

nlgr.}o M’ (Vx(R(x) — B(x))

J\(=R(ai) v B(ai») =1
i=1

Theorem (Confirmation by Random Sampling)

If the sampling function t : N — N satisfies Vi : t; < t;+1 and x1.« IS

Martin-L6f random, where y; = [3k(tx =i)], then

n

AA(an)) —

M’ (VxA (x)
i=1

MM 251 MO 1) 227K 3 M0 1) < oo
n=0
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Advantages & Disadvantages

> free-lunch
> universality — finite error

> data sparse problem — arbitrary order Markov chain — universal
smoothing method

> confirmation of Vx : R(x) — B(x)
» incomputability
» subjectivity — weakly depends on universal Turing machine

Remark: ENERVER, BESERRREBIFIERNZRNNIE
RAKIARRATA .
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Contents

Universal Induction

Incompressibility &
Incompleteness References978
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Incompressibility vs Incompleteness vs Intelligence

>
> P(A)= () P(x)
X€A
> P, = P({x :K(x) < n})

v

v

Theorem (Legg)

Vndp € P, : K(p)§n+ O(logn)
Vn:pePn=>K(p)£n

P(x) = {p € X* - 3Vk 2 1 (p(x1a) = x11) }

A

complex 1
algorithms Gédel
incompleteness
weak powerful
provable but unprovable
algorithms algorithms
simple imppssible algorithms
algorithms >
upper bound
weak A powerful Al

of
provable algorithms

For any arithmetically sound Gédelian T, 3cVn > cVp : T¥ p € P,,.

“given n, find ,ux[prfT (x,p e Pn)] output p" = K(p) < O(logn)
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http://www.vetta.org/documents/Machine_Super_Intelligence.pdf

Godel's Incompleteness Theorem

prova ble True Expressible

Provable

True
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v

v

v

v

v

EF °F°

&, e, FEE B I8, RS
— The theory that can be formulated can't be the ultimate theory. The

formulated theory of categories evolves, and its projection on reality
changes.

B, Kittein, B8, FZE.

— The unformulatable ultimate theory is the truth of universe. The
formulated theory is the basis to describe all the matter.
HEL, RLUREY:, B8, SRLURESL

— In search of the unformulatable ultimate theory, we give meaning to life.
Within the formulated theory, we study its limits.

HE, RHmMEE, FEEZX.
— The gap between the formulatable and the unformulatable is a mystery.
RZNK, Rz
— From the formulated to the unformulated and from the unformulated to
the formulated is the gateway to all understanding.

199 /954



We now know enough to know that

we will never know everything! ©6°

[ 1
AL
B
SRR
i
iHg 2

Figure: For every record player, there are records that it can't play. (sympathetic
vibration)
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E2ZGN

Problem (EJfE/REHANAN?)
» —NBEE BF. IDANTEEAN BFRIREE DIATRiR
BRiE.
BLEBEAEBMIE, BARE.
BEMDIEERE T
{RRB BRI T — M EF SHERLEE.
EHERR: BRBEEMmiE”

vV v. vy
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vV vV vV vV vV VY

Argument from Incompleteness Theorems

G := "This sentence cannot be proved in the formal axiomatic
system T"

We humans can easily see that Gt must be true.

Since any Al is a FAS T, no Al can prove Gr. — Penrose
Therefore there are things humans, but no Al system can do.

P = “Penrose cannot prove that this sentence is true”

Penrose cannot prove P, but now we can conclude that it is true.
Penrose is in the same situation as an Al.

Either (a) absolutely unsolvable problems exist or () the human mind

infinitely surpasses any Turing machine or formal axiomatizable
system. — Godel

There is no absolutely unsolvable problem. — Martin-Lof
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Martin-Lof's argument: there is no absolutely unsolvable
problem

> The proposition A can be known to be true if we have a proof for A.

> The proposition A can be known to be false if we have a proof for
A— L.

> The proposition A cannot be known to be true if we have an algorithm

which tests and rejects any given ‘proof’ which purports to
demonstrate A.

1. reflection: If the premises of a valid inference are knowable, then so is
the conclusion.

2. consistency: Absurdity cannot be known to be true.

3. unknowability of truth entails falsity: From the unknowability of the
X:AF fx:L
truth of a proposition, its falsity may be inferred. f:A — L
= law of excluded middle: There are no propositions which can neither be
known to be true nor be known to be false.
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Strength & Limitation

God plays dice both in quantum mechanics and in pure math.
— Gregory Chaitin
It is the duty of the human understanding to understand that there

are things which it can’t understand, and what those things are.
— Sgren Kierkegaard

The only way of discovering the limits of the possible is to venture

a little way past them into the impossible.
— Arthur Charles Clarke

> |s the Universe Like 7 or Like Q7
> Perhaps from inside this world we will never be able to tell the

difference, only an outside observer could do that.
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HFEZH

— N REAEBEMTS @R G— BENTERITS),
PMETAMS, BERA—HH, BEBEETTEN, BELOBER
PN, FIRERIIME RAYOE. ERMEAYHRE, —HS%
HEBREHLER. XAMREEERT MAIA.

Remark: SHE/REIBIRAR “IRERR-BARTSTERE".

1. EEEEMAEIHITSNBERRS, KIEFEETEHAARE Y
RARREIER, NMEE— BT, seX R ENAH AR EH S
EIEYNITR: )5

2. WTFERIEMARNEHIHESXBAER, FeEzARZANEEHES
LS /NITR: SR

Remark: SHE/REIE vs ARBI: MEFIBRINEEARENRZAEN
ERFMAR], REEEIMERIIERE SRER.
Remark: E€: "HEEIL" AAJ8E.
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Contents

Universal Induction

References978
Effective Complexity
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PRI vs (SRR

207 / 954



e & f#M  Coupling & Decoupling

=RE. KBS (High cohesion & Low coupling) 208954



What is Complexity?

1. How hard is it to describe?
> Shannon Entropy
> Kolmogorov Complexity
» Minimum Description Length
> Statistical Complexity: the minimum amount of information about the
past behavior of a system that is needed to optimally predict the
statistical behavior of the system in the future.
> Fisher Information
> Renyi Entropy
2. How hard is it to create?
» Computational Complexity
> Logical Depth
> Thermodynamic Depth: the Shannon entropy of trajectories leading to
the current state.
3. What is its degree of organization?
Effective Complexity / Sophistication
Fractal Dimension
Stochastic Complexity
Hierarchical Complexity
Channel Capacity 209 / 954
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AT AANSRE? Fe7

AT ATHARTE?

AR BT ENS?

BATRENSKIG?

HRAMA 5 THUBFHRME— 9 TRUKFHRIEEIS?
MIVEFAREZIR LSD JWASKAISN. EARRIENIZTEISORIE.
ERYERER LSD RIXIER 0.1 25, JHRIRER 1 T ARAYF

B 3000 FFe. 0.1x3000 = 300 ERAMEASRAFIEL? ZRX
537

vV Yy B wbNH=
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ERAEFTFERRR

Metabolic Rate (kcal/hr)

Mass (g)

> SESEMAERR: MR B SI8E M 19 3/4 RITRIELL B o« MP/*
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vvyyy

vy

1000000 | Blye whale
100000 | @

10000

100 D
10
1

~~
(=)]
¥4
~—
4
-
=
Q
z
>
o
Q
o

0.1

Elephant
° p

1000 Horse

olphin

Giraffe
Bear
Human
@

Dog (Iarge)‘ Cat
Dog (small). o

Rabbit

Guinea pig Mouse
Hamster -

Etruscan shrew g

50

Heart rate (bpm)

Bo M3* — IHZF o« B/M o« M~1/4

SRS

£

o
5 = TR B SN ERERE

INSIIOBRIR, Eapig.

IVFFrERILMI—E OB

(A 25 1ZR)

M 1/4
oMt

D IDER x Fap ~ 15 {2IR

AT LD SRR EHERIETFRE 47

AT BEERIRMENE, M

=]
BT

TEIEFHID LA, 4E50Z 4.
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RlFFEZe Koch Curve

VAN

R ZRI BB AR

1 log 4
p=28"_ 982 19

" logs log3
Hep, n AFREY, s NEEREF
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Mandelbrot Set — complex structure from simple rule

> Hausdorff dimension of the boundary of the Mandelbrot set: 2

> Topological dimension of the boundary of the Mandelbrot set: 1 214 /954



AIRFEHIZ

Ay

N (SESRES
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L
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Hilbert's Space-filling Curve

When we draw h,,, we impose a 2" x 2" grids onto the square S. The
diagonal of each grid is of length \/(277)2 + (277)2 = 237

We define the curve h as the limit of these successive functions
hi,hy... st. h(x) = nlgr.}o hy (x).

Each point in S is at most 227" distance away from some point on #,,.
1
So the maximum distance of any point from A is lim 227" =0. So &

n—oo

fills space!

Definition. A curve is a continuous map from unit interval L to unit
square S.

For a pont p € S and & > 0, there is some n s.t. some grid of the

2" x 2" grids on § lies within the circle with centre p and radius €. let
I be the largest open part of L which &, maps into the relevant grid.
Whenever x € I, h,,(x) lies in that same grid, for any m > n. So h is
continuous.

Hilbert's curve is continuous everywhere but differentiable nowhere.
Hausdorff dimension: 2

Topological dimension: 1 216 /954



1. K& (1A1R) SBERIILIIRLIELL.

1. BEREETRISEE CRIBRERT.

SR AT REFEND?

. ibﬁdj (BB+E) S5 =AIFTRRIE
te.
- STHENSURER 2/3 IRTTPLIELL.

- NBIAIET LA EEEET B C

VREERYZRP.

- EVIREENE, BYIRIE (SR
ERPRIELY o MP/Y) INERERRE.

- IETRIARRR S, Btk AR
& o AD?'?E, b A St
o AO



SR & IR

> RERFEIERRIEYND? tmhle?
> AT AEMHARREILERAEREINE? T/ LFARIE?
RIFHEE o« M3/

U
HPIESTAME « M
+
EHANE

> YRR R T I EGERL. XPRE T e — KeMOE
B, FanEIK.

> RNERRERHEEIMEIRG N, ARSI EIEGE . XERE,
EXS BRIt URABSS.

> BRI R EHNRSE T B R E. KR =
BR. BRIMRMENNFESET "FUEK"
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B AlET

ACCELERATING CYCLES OF INNOVATION OR PARADIGM SHIFTS

BEMHEREEMEN S, IERFLEREREIER. A TREER
FrEtpaER, HE/BTEEBIEIHLL "EE " 1EKHE%. §—IXeIHE
NESHERIEREE, XEHRELALAEERIEERH I TRE T EIH
BB T I R A B AR A A R ERE B S EUE I, A
— ML EEEESEARRIEIAZFTE, (AR AR RIS EBE
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£ vs NF] vs ITH

2] A bk
N AR (i) | BRI AR
RENHIRERE (A8 ES HER | 7°H (GDP, T, i5R)
IBAERURER | ARR4ER DZS Ehti2E
e i HRE AIE7KES

> BARTHRYAREREA OB ISR, oGy, BRmrRRED
ZZ ARIBRE.
> AR, BEMBR—NARNLIRER 1 /LR, HhHEs
R, ARSTERESDENMEIERR. HhENERNES, 81 AR
ZWHRE 150 MNA.
> #;E%H’ﬂ&?%%ﬁﬁ?iﬁﬁﬁiﬁ’ﬂﬁu%ﬁ'—ﬂ%ﬁﬁ. ABRREIRT. ARERE
NIk .
BRAZ, EHZABAN, #rEZ/KS T, (RFMERR? RS RRMRAY
RS, HLREERME: v = cx*.

logY = klog X +logc
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>

ERERAIRER

FFERER (Zipf's law): FEERES P, REBICRILIBRZEAL
EE_EAER 2 5 BANFRA HEE x IR ~ B
FTEKRENEER (Zipf's law of abbreviation): {FRSUABEANAIL,
HAH<E TS

| TFRAFER (Menzerath's law): BAIMIK, AR ERIAINNE R,
AR, B RIERRHSHHE.

BESL SIS RRIE A BB S AR ESHENSITIE — FTEXRE
eI e VSN E S

AT NNRZRNERY, MBS FEREENERRTTRIESER
RIBRER, L “ERENMENUR R REREZRIER"
ChatGPT4 RN A, EEERMEINES, REXRBAIZSIENE,
EHBEFTERER.

BEEN: WmRIAL, MITRYEE, EEABRBRAN, RUSTEXRE
ERINSRERFE.
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Logical Depth

Definition (Logical Depth)

The logical depth of x at a significance level b is
depth,, (x) := min {t U (p)=x & t(p)-K(x) < b}

We say x is shallow iff depth,, (x) %f(x).
Crystal is shallow.
> Gas is also shallow.
» A math book is deep.
> Life is deep.
“If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.”
— John von Neumann

v

> X1 is deep, where y; = [¢: (i) |].
> Q is shallow.
“A structure is deep, if it is superficially random but subtly redundant.”

— Bennett
2227054



BRE LY Effective Com plexity

EC(x) = K(argmin {K(u) + log 1 } )
M u(x)

‘Iow Kolmogorov part (“laws”) + potentially indefinitely complex part‘

wos BOR | S BEh
FERHES FER FrEEH 1R

> R CEER UE R, BB I o g2

>k TS B R AL R T
B )

> BEEHEBCAR "HEXRIEILTF

> IR thERIEILF

> EBF AFHm NEAR RZNIR,
LAETFTA. FTTAMEAS.
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Crutchfield: Statistical Complexity FtitE %Y E

Input Tape
lol TTTTTTITT]
«—» Working Tape
Bernoulli- | Finite weHEEEE
Turing State
M achine Control

ofef T I T T T T T TT]

-— Output Tape

Culx) = H}jn{f(l’) : BTM(p) = x}

where Bernoulli-Turing Machine (BTM) is the UTM with a source of
randomness.
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https://arxiv.org/pdf/2402.09090

Crutchfield: Statistical Complexity FEitEHE

IS

E[K (x1:)]
t

H(Xlzt) _
; =

h/J = tll)l’{.lo t]_l{g H(Xt | X<t) = tll)r{.lo

A
> ;THG%B]‘EH-L h/l =1
> Agent EILNEHRRIE —BR D B FEFIAIETTRKAIBENIRRS.

Cu(x) = K(x) = hy - £(x)
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https://arxiv.org/pdf/2402.09090

Complexity vs Randomness

Edges of Chaos?

~
~
o
=

Deterministic
Complexity

C,/bit

Statistical
Complexity

0

0 Randomness, / , / bit 1

0 Randomness, # , / bit 1
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What do you Need to Remember in Order to Predict?

Space of all possible
pasts.

N~

011 10111
111 , 010
Lotbs Oéillflll 01110
0 110 111
11110 01 1911
1110
1010 01011 111111
10
1111 o AoL 1101
110111 010111
O
Do | really have to remembgr
all this?? O

My memory isn’t
good enough.
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One Only Needs to Remember the Causal States

»

Causal states partition
the space of all past
sequences

N,

1010 01110
110__

.

. 110111

A 01111

10
01111 01011

_-~~

\

(11110 ; 0101%,
""" bp11 1101
01

11011,

011

1110 ;
"~ 010,

~=”

010111

101
0, 0111

‘10101
10111
11101

Smmmm——

v

This is better!

O
O

| only need to remember 4
the causal state, A or B,
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> FRUEMN:

X1 ~ xi;t & Vxs;: P(xs; | x14) = P(x5, |xi;;)

> ERZ:

€ X1 P [X1:4]

Causal states

€0

wmwuwué
\|o|o|1|1|o|1|o§

\|11|ollo|o|1€}

Xt+1 Xt+2 Xit3 l
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e-Machine
e-Machine F9MIE M = (S, T4):

S = A*/~ = {S(),Sl,SQ, . }
Tf = P(Sj,a | Si) = P([x1ea] | [x1:])

Ta
Macro Sy —— St
ET Tf
Micro X1t —— > X1+l
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e-Machine IARITEZE: ERSHERGE

C.(S) = H(S) = - Z P(S) log P(S)
SeS

The statistical complexity measures the minimum amount of memory
needed to perform optimal prediction.
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> HFARZAR?
— ZARE#R? B BEREW? ...
> HARE?
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Jean-Louis Dessalles’ Simplicity Theory

Unexpectedness

An event is unexpected if it is simpler to describe than to generate.

U(x) = Cw(x) - Cp(x)

> Cw(x) == min{€(p) : WIM(p) = x} is the causal complexity /
generation complexity, i.e., the length of a minimal program that a
human individual's “World-machine” (causal procedure) can use to
generate x.

> Cp(x) =min{f(p) : OTM(p) = x} is the description complexity, i.e.,
the length of a minimal program that a human individual’s
“Observation-machine” can use to describe x.

Remark: unexpectedness can be used to define ex-post probability
Pgub; (x) = 27U

234 /954


https://simplicitytheory.telecom-paris.fr/

Example: MES55RERIIFTS

HEMERBENERSE 7 178 2888 5 M1
PALFERRIE 46 FHIEEERNBTINR.

FIUAE 56 FFERBRIERARISSAIZE S,
PSSERRTE 60 FZHIERE.

>

>

>

>

>

> RIS SRR,

> FREAT LRSS RN
> TRIASERIOHT, STEMES.

> TGRS D EREE By,

> B AG B —RIRIRRE IR TRIE .

> WRSTERESRIRRG. SN ES SIS S SRR,

> (TR L RSN 7 A 1A BRER /RSB TE TR

> FEITRIBIRESRE 3 N5, 2BHE 15 M.

> TR BRI RS IASEELET 08 ERNERNEHRESA.
U= Cw(xy) - Cp(xy) Cw(xy) =Cw(x)+Cw(y) Cpxy) < Cp(x)+Cnly) ),



Example
./ \.
SN SN SN SN
AN A A A A A A

(] [ ] &j}\ L] [ ]

> Imagine that a ball falls down along a binary tree. It eventually
reaches a leaf x of the tree of depth n.

Cw(x)=n

> Therefore, unexpectedness U(x) = 0 for most leaves.
> However, if the observer can use a simple feature u to single out the
winning leaf Cp(x | u) = 0, then unexpectedness U(x) = n — Cp(u)

may be large. 236,/ 954



Examples

> JEEREUEEH.
— EERFH 7,7,7,7,7,7,7
— EWMER—EK/)N; Solomonoff BIABIERREX; X
Py (TTTTTTT) 1R/
> {2 IBHED:
— & Cw, & Cp
> RBRHEE:
— BIHRE IR R B SBRNRIERIREY Cw, BHE Cp
> HEFRSUN:
— M (IFFRE0ER) FEREHETE vs NBRZHGEETE

Cp(x) < Cp(u) +Cp(x | p)
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Comprehension is Compression

> Subjective Probability: Pg.,i(x) = 2-U ()

> Creativity: select actions that will maximize unexpectedness

argmax, U(s | a)

> Foreseeability of the consequence s of an action a: —U(s | a)

» Aesthetics/Humor: complexity drop

Relevance:

1. sis relevant if U(s) >0
2. tis relevant w.r.t. sif U(s) > U(s | 1)

> Abduction: to find out a cause to diminish the causal complexity.

> Causal Responsibility of an action a in situation s: Cyw(s) — Cw(s | a)

> Emergence: the difference between the sum of individual complexities

and the collective complexity.

> Storage: once data is stored, it can be defined by its address.

> Intelligence: to take the best rewarding action based on the most

probable, i.e. the simplest, future.
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https://ebooks.iospress.nl/volumearticle/48059

=L KIESEREER "BEIER" BZE?
Definition (Unexpectedness[SD22])
U(x) = Cw(x) - Cp(x)
He, Cw BEMERME, Cp BRIEIASRME.
> BIE: IEIRH AR unexpectedness BIBNE:

argmax U(s | a)
a

> I KIESEER/IMUTIARRAM IR unexpectedness SHAY “F
PP
A" = argmin Pgupi(A | Q)
A

Hep,
2—U(x)
Pgubi(x) = T 2 U
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Determinism, Indeterminism, Randomness and Free Will

1. If our actions are caused by chance, we must lack control over them.
2. Randomness, the operation of mere chance, clearly excludes control.
Does randomness conflict with free will?

1. Random Process: a process whose outcome is uncertain. (IT)

2. Random Object: something that lacks regularities, patterns, is
incompressible. (AIT)

> Is indeterminism necessary for free will? Yes?

> Is indeterminism necessary for randomness? No. The halting
probability Qg is Martin-Lof random, but determined by U.

> |s randomness necessary for indeterminism? No. There are automata
that work in non-deterministic ways without use of randomness.

> Indeterminism and randomness do not imply each other.

> To make random decisions the agent needs to use a random generator.

> Asking another agent to make a decision on its behalf is no different
than asking a random generator.

> Randomness is compatible with free will so long as it exists.
240 /954


https://www.cs.auckland.ac.nz/~cristian/crispapers/Freewillrand.pdf

Machine vs Human — ghost in the machine

input —» output

free will

input —» output

> information processing: information is changed from one form to
: o
another, or is lost K(output) < K(input)
> information generation: information is created K (output) > K (input)

> natural processes cannot create information
> there is no algorithm to create information
> information generation requires a contingency mechanism — soul
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IRfE vs ISR

The noblest pleasure is the joy of understanding.
— Leonardo da Vinci

What does ‘understanding’ mean? £ V;
> @ R4 BIEER .
%?E %5%%\4 *}EI'L,J%TM 4" | cause anp EFFEeT [
> R HFIEITRORNE
— TSRS
> YRR T T Tl
— T FIRER
> EFTIARPHITHEE. MK
— FERFLER
> DNz
— HTHWEFEIRECESRIZX.
DINZI ~ AREI?
> RREIEE (o E, RMEND)
ESRATLARTFHEE, Fll. RSk, #RRE. I3%..... 242 95

< CAUSE
¥

www.bobseal.com



Causal Argument in the Bible

> God asks: “Did you eat from that tree?”

> Adam: “The woman whom you gave to
be with me, She handed me the fruit
from the tree; and | ate.”

> Eve: “The serpent deceived me, and |
ate”

- Remark: God did not ask for explanation,
only for the facts. Explanations are used
exclusively for passing responsibilities.
Once we really understand the logic
behind causal thinking, we could
emulate it on modern computers
and create an ‘artificial scientist.’
— Judea Pearl
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%5 EHRE 1822-1895

o @6 e

Heat applied Let flask sit No bacteria present

TETZE: BAREILS. £ N\
MAFEYIH BT E. & é é

— BEH=E. BREE. -

> E"Hﬁ%% E;}Ei@ E%i}ga:i% . Heat applied ::;1‘:?‘ Ishme neck Bacteria present

> BHME: MEEER. HERel
FEEMDRYRRRS #2089, —_— — ﬂ
— REIES. EMERE. v

SRREIE FREGERE e SIS
HERKE. EREIRETE.  mmET it SYERFEE, A
— FriE: B, 0L, 57, 8 suramly. '

SA
1< 7J<- 244 /954



S[Eij:g?l% — @i';?,”

“Knowledge is the object of our inquiry, and we do not have knowl-
edge of a thing until we have grasped its ‘why’, that is to say, its
cause.” — Aristotle

%"-‘«ﬁ m.; 2 ::dﬁ-
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T4 “Em"? — FKEREL?

> AEAn RSN RE S B RUHSIILE RS

> IRSSETMEERN wiE . LLARAEC “BHl” FiRE. RS

> REIRERI D F. REAEE “HBRIE".

> JREREEEHL, (BRI RREETUER:.

> THMEASEARERR FEESRIVENIIRE. BAARREE
&, FTATIEER. 2EMEH).

> %iﬁ BCHNER, EREERE, BEANFEMER. BTEM
kvic 2=

> WEHEFESAZIEIEREMEMHE, (BRBEFEIEE MR ]
SHEbRMATHEIEESEAE, BT ERIBFRIEERRAIIFA
B REFREHET TREREH. BEIERERS.
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vV V.V V. VY vV vV VY

A Power of Change-which-changes-its-own-rules

BNAEEEEECHNEHREEECHR, BREE CEBHMEF
FIELAE, L EEHEBHFIIARNR. BAEEHLEEN
HAHE. EROAEENERNRE. BYHNEREE. SRR
SEZEEINT

— iR LER
Bi8& autonomous
B4B4R self-organization
BEFHERF self-sustaining
BHI5EE self-improving
B E# self-replication
BIEIE self-governance
BIREFKIEE limited self-repair
1EE L mild evolution
JBEBE>] partial learning
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ELEEHL Varela IEBIER S

> — P ERGR BEIE /Y, R
L PRSI HELR, EESMERESHITHIREERIASHE.
(BRHEFFR)
2. XMBFREARGANEFMEER. (INEAST)
3. XMEFMSERILF BB EIENFMHEUBER. (INEAE)

> —PMELREREEFNENRFHEIRA BEIER". tLIisE, &%

=
=23

> —PNEREFNMREELEFNE, EEEFHNMDAEERERSTRE
1E’\J. A REmE B ERUERIINRE, Ry “REI4RY". AN,
tI).
Remark: IANMIBERREAXHRBEEBHNFRL, EAREAREEWE
AN, MEESENRES, it E B I ER=EBMNT
o). BiEENERIAA.
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From Aristotle’s Four Causes to Rosen’s “Life”

—
ﬂﬁﬁﬂ

FE — BY/BREE BrY/BRE — BrIE

“A living system is a system closed to efficient causation, i.e.,
its every efficient cause is entailed within the system.”
— Robert Rosen

efficient cause

T

material cause — final cause <~ efficient cause

e 5
Mechanism or { infinite regress?

Organism? )( \ closure to efficient causation
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N A

4 —» b <~ R entails b as its final cause.

Mr. Why?

Mr. Why: “why b?"

Rosen: b = M(a)

2.1 “because a”, this is the “material cause”
2.2 “because M", this is the “efficient cause”

Mr. Why: “why M?" — within physics there is not really any answer,
other than that this just is a natural law.

Rosen: “because R": R(b) =M

Mr. Why: “why R?"

Rosen: “because B": B(M) =R

Mr. Why: “why g7"

Rosen: “because M": B=b and M(a) = b

A-M,.p R, Hom(A, B) _r, Hom(B, Hom(A, B))

Remark: b is the material
cause entailing its own

‘J_/-’I/ H \ efficient cause M which



https://doi.org/10.1016/j.jtbi.2009.11.010

THRERZE KR LFHZF THRNEIKE ESHAGLRILE

Marco Polo describes a bridge, stone by stone.
Kublai Khan: ‘But which is the stone that supports the bridge?”’
Marco Polo: ‘The bridge is not supported by one stone or another, but
by the line of the arch that they form.
Kublai Khan: ‘Why do you speak to me of the stones? It is only the
arch that matters to me.
Marco Polo: ‘Without stones there is no arch!

— lItalo Calvino: Invisible Cities
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Rosen: “What is Life?”[Luz+09]3

> M: metabolism M(a) = b efficient cause
> R: repair R(b) =M ‘M
> B: replication S(M) = R material cause — final cause?

A M, B _R, Hom(A, B) —2—+ Hom(B, Hom(A, B))

M i N

ai$ww—R AE:(( M\ /M

-~

Assumption: The evaluation map
ep : Hom(B,Hom(A, B)) — Hom(A, B) :: &5(R) = R(b) is invertible.

Then £, (M) = R. Thus, we can set B =¢,", i.e,, B is determined by b.

3Luz Cérdenas et al: Closure to efficient causation, computability and artificial life.
2009.
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ANEEME

REAHETEME (aleatoric uncertainty)

L HFREAR EEMENA

2. HRZEHEMR, BANZETERY, Eit, MNRLBTIREIHAIRA, 7
RMEFTI
3. HREHEMR, BANEHo AR

INKAFRHREME (epistemic uncertainty)
1. HRZTETMERR, (BERERaEmERIEDER

2 EEJSZ%DT%HEEXE’\J%?E%%@EI’\J%XEX@@)’EE@E&UFE%‘%E’J@%

3. BTRIEBENRIPRS!, tHFEEIAIER
4. ATFIGRETRRIBRE], tH FAERAS RS
PR ESRAEREAE?
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Probability

Probabilistic assertions summarize effects of
> laziness: failure to enumerate exceptions, qualifications, etc.
> ignorance: lack of relevant facts, initial conditions, etc.
Subjective probabilities relate propositions to one’s own state of knowledge.
They summarize the agent’s beliefs.
> An event is any assignment of a value or set of values to a variable or
set of variables. {u € Q: X(u) = x}
An event (subset of Q) can be taken as a proposition that can be true
or false.
> A random variable is a measurable function from sample space to
some range, e.g. the reals or Booleans. X : Q — R
P(X=x) = Z P(u)  P(A)= Z P(u)
u:X(u)=x urA
Example: CoinToss = head, Age > 18

—_

1 1 1
P(DiceOdd = true) = P(1) + P(3) + P(5) = 5 + -+ 6= 3

D
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FAEER
IEE 4 HHIT SEURESIIRIR, BT — IR L
MWE PA.
pACS) = {C*P(S) ifurAforallues

0 ifug Aforallues
1=PYQ)
:PA({ueQ:uhA})+PA({ueQ:u#A}) _ C:L
=cxP([A]) +0 P(A)
=cx* P(A)

P(B| A) = PA([B])
= PA([A A B]) + PA([-A A B])
=c*P(JAAB])+0
P(A A B)
TP

Remark: P(B | A) = Z088 [P(A) + P(~A)] = P(A A B) + ZE5E P(-A)
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JRIZ & FAHIRNL

> Conditional Probability

P(A, B)
P(A)

P(B|A) = (when P(A) > 0)

P(Age > 18 | Fall-in-Love = true)
> Independence:

XL1Y & P(X|Y)=P(X) (when P(y) > 0)
e P(X,Y) = P(X)P(Y)

> Conditional Independence:

X1Y|Z & P(X|Y.Z)=P(X|2) (when P(y,z) > 0)
= P(X,Y|Z)=P(X|Z)P(Y|Z)
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Inference

> Bayes Rule
P(A,B) P(A|B)P(B)

P(A) — P(A)
> Total Probability: assume {B,...,B,} is a partition of Q,

P(B|A) =

P(A)= ) P(A,B;) = > P(A| B)P(B;)
i=1 i=1

> Queries can be answered by summing over atomic events.
to compute the posterior distribution on query variable H by fixing
evidence variable E = ¢ and summing over hidden variables S = s.
P(H,E = P(H,E =¢,S =
P(E =e) P(E =e)
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Digression — Jeffery's Radical Probabilism Philosophy

What is a rational update P°'d — prew?

> Dogmatic Probabilism: any rational change in beliefs should be
explained by a Bayesian update.

Bayesian Update
PneW(H) — POId(H | E — 6)
» Radical Probabilism: no facts are known for certain.

Jeffrey Update

PneW(H) — ZPold(H I E = e)PneW(E — e)

e

> van Fraassen's Reflection Principle
Po(A| P1(A) =x) =x

> Lewis' Imaging Theory

258 / 954



Remark: AMAEMUETE TAY Jeffrey Update

> BRIRRIIRBEXTIHELE E NIREE E, (Eb5iRE iR,
REIRE, AMREEREE) MATKMbt .
> INERAVHEHREMANER £, BBARIIRABREETEIK
UHE E, ATLA P(H | E,E) = P(H | E).
P(H|E)=) PHE=c|E)
= ZP(H |E=e¢,E)P(E =¢ | E)

=Y P(H|E=e)P(E=c|E)
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Judea Pearl 1936—[Pea09; PM18|

Vet - BYR uveareaes

— WA % EN R —
() T4 + ZEHTFF DANA MACKENZIE ¥
W T

L
=l ] BERrsaaLs

JUDEA PEARLQ
CAUSALITY

AR - KR w

AR it

THE BOOK OF WHY

N A 4

e ]

THE NEW SCIENCE
OF CAUSE AND EFFECT

ol et

------
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Bayesian Network

Definition (Bayesian Network)

A Bayesian network is described as a directed acyclic graph G = (V, E, P),
whose nodes V represent random variables, and edges E C V X V express
dependences between nodes, and the joint probability distribution P over V
is factorized as

PV) = || P(Vi|Pay)

VieV

where Pa; is the set of parent nodes of V.

Remark: Bayesian network encode joint distributions efficiently by taking
advantage of conditional independence.
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v

vYyy

Terminology

Ancestor

M"da/“t
T T

S@ You're Here < Your Child's Parent >

Descendant

A path is a sequence of distinct nodes in which every pair of successive
nodes is adjacent. (Direction does not matter)

A directed path is also called a causal path.

A path from X to Y is proper iff only its first node is in X.

If there is a directed path X — --- — Y, then X is an ancestor of Y,

and Y is a descendant of X.
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Markov Condition & Markov Blanket

> Markov condition: A node is conditionally independent of its
nondescendants given its parents. X; 1L ND; | Pa;

Remark: ‘8B ZRE, —PMEESHARNVFMAIRIL

> A node is conditionally independent of all other nodes given its
Markov blanket: parents + children + children’s parents.
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Bayesian Network — Example

S R|P(W|s,r)
t ot .99
t fl 90
[t .90
f fl .00
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Chain, Fork, Collider — Examples
1. Chain

2. Fork

HFXNSIEEENIERX.
3. Collider
L

Berkson’s paradox: BBERAESEMERBX.
I ABLESENFERRESIREHES)?
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Screening off / Conditional Independence

» (C screens off A from B iff
P(B|AANC)=P(B|0O)

equivalently, PLAAB | C)=P(A| C)P(B| C).

> example

[EERES] B

266/ 954



BMRNDE d-separation

Definition (Blocking of Paths)
A path p is said to be blocked by a set Z iff

> p contains a chain X - W — Y or a fork X < W — Y such that the
middle node is in Z, or

> p contains a collider X — W « Y such that the middle node is not in
Z and no descendant of W is in Z.

Definition (d-separation)

Z is said to d-separate X and Y in the DAG G, ie. (X LY | Z)g iff Z
blocks every path from a node in X to a node in Y.

Example

X Y x.Y X Y X1y
\Z/ XLY|Z \Z/ X1Y|Z
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Example — Collider

> ERKERHEAERL
it £

=FE
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Example — $XEXIAR) LEFLLIS?

> HAEMRERE) LELIERE) LA TRS 20 (&
> HRERRAVEE) LSS SRS LR
> }E%XI)!L;—FE’JH-JEVFEEZE’J 2 LRIZE R AR R HEARER
K
> XAV ALIS?
> Xﬂ:—/\tl:.'EMVEE"E’J 2)L, BRI T A ARER, I#ET
BB FRERAIAEE
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Monty Hall Problem

> IR 10 20 3 =AMAIBHBENLIGT T — MR, EERMMETE.
BSRIAMELLEIANE R CRIIE.

NIE 1 FATFEEHAK: BEREIRIRINIE 2. 3 PiERHATE?
WS HIFRBTEL, NIE 3 WAL

NIC 1 BIXHEEIREEBIRINIC 2 77T

WA 1: FIETRAMERM § IBART § 7. IRt—HE

WIE 2: RETRAMESER 5. FF TRAMERIERE 2 7

vV v v v Yy

270/ 954



> You're given the choice of three doors.

» You pick a door, say No.1, and the host, who

Monty Hall Problem

» Behind one door is a car; behind the others, goats.

knows what's behind the doors, opens another
door, say No.3, which has a goat.

He then says to you, “Do you want to pick door
No.27"

First Choice

’ Host's Selection ‘

T

Second Choice ‘\— Utility
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Monty Hall Problem

“ Your Door < Car Location >

W

» C;: the car is behind door number i.
» H;: the host opens door number i.

> X;: you choose door number i.
3

1 1 1 1 1

P(Hy| X1) = Y P(Hs | X, C)P(C)) =5 -+ 1-=+0- 2 ==

; 2 3 3 3 2
P(Cy | Xy Hy) = DX H) _ P(Hs | X1, COPXDP(C) _ 375 _ L
HEERTET TP(Xy, Ha) P(Hs | X1)PGXTY 13
P(Cy | X1, Hy) = PC2XuHy) _ P(Hs | X1, CIPXIP(Cy) _ 175 _ 2
ST (X H) P(Hs | X,)PX) I3
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vV vyy

IR A
Nature SRS ERZMR.
Bk T 1 517
FIREAFTFH T BINERI].
(RIS JIE?
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Monty Fall Problem — a variant

*_Car Location

Your Door

_Host's Door _

What if the host chooses a door that is different from yours but otherwise
chosen at random?

» (C;: the car is behind door number i.

» H;: the host opens door number i.

> X;: you choose door number i.

P(C;, X1, H P P(C; 1

P(Cl | Xl,H3) — ( 4 1 3) — MM ( l) — P(Cl) —
P(X1, H3) P(HsAXT)PEXT) 3

_ P(=C3 | C1, X1, Hy)P(C1 | X1, Hy) 15 1

P(Cl IXlaH37 _'C3) - P(_|C3 | Xl,HS) - % - 9
P(~C3 | Co, X1, H3)P(C | X1, Hy) 13 1

H — — = = —

P(C2 | le 3 C3) P(_|C3 | Xl,HS) % 2
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Shallow men believe in luck or in circumstance. Strong men believe
in cause and effect.

— Ralph Waldo Emerson

Unobserved Causal Mechanisms — Observed Data

Do not model the distribution of the data, but model the mechanisms that
generated the datal!
275 / 954



ks

fon?

Just because
you are right, does not
mean I'm wrong.
You just haven't seen
life from my side.
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Traditional Statistical Paradigm of Structural
Inference Paradigm Causal Models

Inference

277 /954



Causal Inference Engine

Background Inputs "Inference Engine" Outputs
Y |
I ! .
| Knowledge ! e Assumptions 2 = Causal model3  {—= Testable implications *
I
| I
c }} & Return to
5 an the query L boxes 2 and 3
Query " be answered?
e Estimand 6
Data’ |_»| Statistical estimation 8| YES (Recipe for
answering the query)

Estimate °
(Answer to query)
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THE LADDER OF CAUSATION

3. COUNTERFACTUALS
ACTIVITY: Imagining, Retrospection, Understanding
QUESTIONS: What if | had done . .. ? Why?
(Was it X that caused Y? What if X had not
occurred? What if | had acted differently?)
EXAMPLES: Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not
killed him? What if | had not smoked the last 2 years?

2. INTERVENTION

ACTIVITY: Doing, Intervening

QUESTIONS: Whatifldo. .. ? How?
(What would Y be if | do X?)

EXAMPLES: If | take aspirin, will my headache be cured?
What if we ban cigarettes?

1. ASSOCIATION
ACTIVITY: Seeing, Observing
QUESTIONS: Whatiflsee...?
(How would seeing X change my belief in Y?)
EXAMPLES: What does a symptom tell me about a disease?
What does a survey tell us about the election results?
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The Ladder of Causation
3 Counterfactuals P(Yx=y | X =x,Y = y)

> Activity: Imagining, Retrospection, Understanding

> Questions: What if | had done ..7? Why?
(Was it X that caused Y? What if X had not occured? What if | had acted differently?)

> Examples: Was it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not killed him?
What if | had not smoked for the last 2 years?

2 Intervention P(Y | do(X = x))
> Activity: Doing, Intervening

> Questions: What if | do .7 How?
(What would Y be if | do X? How can | make Y happen?)

> Examples: If | take aspirin, will my headache be cured?
What if we ban cigarettes?

1 Association P(Y | X = x)
> Activity: Seeing, Observing
» Questions: What if | see ..?
(How are the variables related? How would seeing X change my belief in Y?)

> Examples: What does a symptom tell me about a disease?
What does a survey tell us about the election results? 280 /954



(Smokmg

< YeIIow Flnger ) O Céﬂgh\

1. Prediction: Would the person cough if we find he/she has yellow
fingers?
P(C|Y=1)

2. Intervention: Would the person cough if we make sure that he/she has

yellow fingers?
P(C|do(Y =1))

3. Counterfactual: Would George cough had he had yellow fingers, given
that he does not have yellow fingers and coughs?

P(Cy-1|Y =0,C =0)
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N~~~

Observationa
Data

Y
N

‘Qb

N~ —
Background
Knowledge

Graphical Representation
Association Bayesian Network

Causal Structure:
"What are the causal
relationships in the
system?”

Association:

“"What is a certain
probability if we find the
system how it is?”

Intervention:

"What is a certain
probability if we
manipulate the system?”

Counterfactuals:
“"What if the system would
have been different?”

Intervention Causal Graph / Causal Bayesian Network

"How is lung cancer
related to smoking
and genetics?”

"How likely do
smoking people get
lung cancer?”

"What if we ban
cigarettes?

"What if I had not
been smoking
the past 2 years?”

Counterfactuals Structural Causal Model / Functional Causal Graph
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The Causal Hierarchy

1. Association: “What if | see x?”

P(y [ x)

2. Intervention: “What if | do x?"

P(y | do(x))

3. Counterfactuals: “What if | had done things differently?”

P(y;c’ |x’y)

4. Options: “With what probability?”

Explanation y because of x
Intervention y will be true if | do x

Counterfactuals y would be different if x” were true
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| BTN, SRERERIEE?
> MBHHTRIVAT, ASREEE?
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VAN
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Remark: #IZR vs F|ER

> FESNEMRER, B THARRRAIER FAIERK
=?

> RUIATERIRESET AKEZL, FH, AKZWGERET LIRS IHRERS
R9E, BBAHRRESRANRA LR ZE AR,
> FELETFHEERIRR, SIRRRE AT TEFEEEE

'Ij(’&*ﬂ%f@ 2 JLARRIRSZ BRI XE RS, NSE
11:| = EI'J*_LJ_‘_*E ITHC.

> *ﬁil%@?@Aﬂ,ﬁ (BFIEIL) FIAHEMITE.
> ERAJLRL9f=E=g?
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Remark: {175f] vs HEZR

R L, 1T REERA—5D

BMRZESMZENDHRE.

1TENERT BEtB AR LR RAOTTUETE.

HEH Pa F Ps DRIFRRITEN A §0 B BIBEERAY, BT EHERTH

EXE1TE0 A A B IMAVBREHER Parp, BEEEMRREAGHIHRER.

> FLUMERT, RS P(s) PIHSESMUTXI =R
&, BTG E—REERRT, IZYMRRr2IAEEF, (BA8EM
WIARZ SN T ER ST AR, XBEIRMR TR
MERIEIMER, XEERYMSE A E SRR

> BEERRENZ IR ToEREITS.

EIR vs 1738
> BAFEIIRERFEE?
> TEOJESHY. MEL. =ZiE. SR

vV v.v .Yy
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Randomized Control Trial — Deconfounding via “Randomness”

Remark: “fEHl" X7 “BZET" X Treatment FIEIRIER.
TE = E[Y | do(X = 1)] = E[Y | do(X = 0)]
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Randomized Control Trial

RCT REJgE “WE"

- SRS HIA

RS EIRTT —

J J 0
O 0 > FRARMENZIHE
o R RIRATT
!-rﬁ"‘ S— Al

ROUP 1 GROUP 2

N J
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PSS

> BELRTLAZKES:.
> WE R LAHEBRIEHZER.
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CE IR B U

> (CIERE (FIa0, AeEREHLD EC AN A LN E XA AbEERIRIm)

> AAJ4T (a0, ARERENL D Bz SEA T E X /B AT X HIELAN
EHIY GDP BIS/IM)

> EJBE (f5Ian, ABEREE— 1 ARY DNA LUNEERSZERERSZIm)
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MRTTEHATREN XS RIS EATD?

> FATRT LA BB R IG o5 S R SRAREY.
> [ REREEMNNIUEIERITTERRMN, NAFHT T 8
BFEILA, {BFIFERELNILE.
> FENNEERF S RRER, BRAFEEIE SRR
> ESTFE THEEXNEIRGR, EFFRAEE REGEBSH
2250, S A LASE IENSEI S BRI
> ERRDHT, EHIERECER—EAEMARERIEHIRRRE.
RAEGENERRE BEHEEDEFZIRRXE.
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Structural Causal Model

Definition (Structural Causal Model SCM)
A structural causal model is (M, P), where M = (U,V, F), and

1. U={Uy,...,Uy} is a set of exogenous variables that are determined
by factors outside the model.

2. V=AVy,...,V,} is a set of endogenous variables that are determined
by other variables in the model — that is, variables in UU V.

3. F={f1,..., fa} is a set of deterministic structural equations,
Vi = f;(Pa;, U;), where Pa; c V\ V.

4. P is a distribution over U.

’Mechanisms F and distribution P(U) induce a distribution P(V)‘

> The submodel M, represents the effects of an intervention do(X = x),
and is defined as M, := (U, V, Fy), where
Fy={fi :Vig X} U{X = x}.

> A soft intervention on a variable V; in an SCM M replaces f; with a
structural equation g;.

2902 / 954



Remarks

Deterministic Mechanisms F
= Distribution P(V)
Distribution P(U)

Causal relationships are expressed in the form of deterministic
structural equations F', and probabilities are introduced through the
assumption that certain variables in the equations are unobserved.
This reflects Laplace’s conception of natural phenomena, according to
which nature’s laws are deterministic and randomness surfaces owing
merely to our ignorance of the underlying boundary conditions.

> Probabilistic SCM: (M, P)

> Deterministic SCM: (M, u), where u is a particular realization of the

exogenous variables U: P(U = u) = 1. (Causal World)

293 /954



Markovian & Semi-Markovian

> A structural causal model is Markovian if the exogenous parent sets
U;,U; are independent whenever i # j.
Remark: It guarantees that the causal Markov condition is satisfied
w.r.t. the induced causal graph.

X; L ND; I Pa;

> |f we allow for the sharing of exogenous parents and we allow for
arbitrary dependences among the exogenous variables, it is called
semi-Markovian.
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Every SCM M induces a Causal Graph G

Definition (Causal Graph)
Consider an structural causal model M = (U,V,F). Then G is said to be a
causal graph of M if constructed as follows:

1. add a node for every endogenous variable in the set V.

2. add an edge V; —— V; for every V;,V; € V if V; appears as an

argument of f; € F.
3. add a bidirected edge V; <-—- V; for every V;,V; € V if the

corresponding U;,U; C U are correlated or the corresponding functions
fi» fj share an exogenous variable as an argument. Semi-Markovian

Remark: Each bidirected arrow encodes unobserved confounding in G.
They indicate correlation between the unobserved parents of the
endogenous variables at the endpoints of such edges.

Remark: X is a direct cause of Y if X is a parent of Y.

X is a cause of Y if X is an ancestor of Y.
205 / 954



Example

C|/ofd§/ Model(M)
S - o C = fc(Uc)
<§Prinkler A/Q?a@ S = fs(C,Us)
- , R = fr(C,UR)
< Wetness W = fw(S, R, Uw)

> Every missing arrow advertises an independency, conditional on a
separating set.
CLWI(S,R SLR|C
» Ps_1(C,R,W)=P(C)P(R|C)P(W|R,S=1)#P(C,RW|S=1)
C MOde|(MS:1)

el . ~. °¢- fcUc)
=1 / R S§=1 / R §=1

\ \ R = C,U

W W Jr(C,URg)
W = fw(S,R, Uw)

Would the pavement be wet had the sprinkler been on? 206 /954
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ELEREN. BEFEE "YERT" AIMR?

P = XM + 125
B, BEFHE 28ERENHS (BR. XR), EFRTUE,
FEREE, B FERNEERBHARER

v

v

>THO Ko
Zon _
E=S1 P10
1 e A ES1
B | A
: K2 iES2
BkZh2 ~
l BIh2
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ANEZEEIRITIR

w W w w
| | | /x\
Z z [ox] Z 4
SNV 4N\ W\
X Y X Y X )’ X Y
> W: JiSERkSR
> Z: Tl
> X: HES
> Y: BARASR

1. B0 L3N, ox = do(X = x) FFERZEEESHS:
Remark: Blox|A = P(B|do(X=x),A)=P(B|A)
Example: Y Lox | X,W,Z W,Z 1L ox

2. FMHFIR: HUN, ox = g(w) IHERGENRFEEZHS

3. EAZFTH Eegn, ox = P'(x | w,2)
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J37 BRI SRATLH

Independent Causal Mechanisms ICM[PJS17; Sch+21]
REHIEREIT R IR AIIRAE R, R AR BB,
ERRERT, XEH®E
> BEE—MIUE P(V; | Pay) AEFBEEHVE P(V; | Pa;), j #i.
> FEEEE P(V; | Pay), j i, BASIHE P(V; | Pay) IREUE
GIEI=S
Remark: ERERNEZENBER T, XEWKE

P(Effect | Cause) L P(Cause)

Example: P(Temperature | Altitude) L P(Altitude).

HLH P(Temperature | Altitude) FEABISIZI AR X EAZTH.
The true causal order is the one that is invariant under the right
sort of intervention. — Herbert Simon
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Remark: Agency violates Independent Causal Mechanism

Y

: Temperature Response —¢_ Temperature

» Causal factorization:
P(a,t) = P(t | a)P(a)
P(Temperature | Altitude) L P(Altitude)
> Altitude distribution shift:
P(a) ~ P'(a) = P’'(a,t) = P(t| a)P'(a)
> Temperature distribution shift (soft intervention):
P(t|a)~ P'(t|a) = P'(a,t) =P (t|a)P(a)
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Remark: Agency violates Independent Causal Mechanism

 Altitude Distribution CAltitude

| y

: Temperature Response —¢_ Temperature

» Non-causal factorization (entangled representation):
P(a,t) = P(a | 1)P(¢)

P(Altitude | Temperature) £ P(Temperature)
P(a) ~ P'(a) = P'(a,t) =P'(a|t)P' (1)

P(t|a)P'(a)

where P’(1) = ZP(I |a)P'(a) and P'(a|t) = P (1)

301,954



A ARRKRE "eE", 53, 27

BRXEBTAME, i 7t FAIZYIERLR, MlERXR
BTANAIE, RIRT G HFRAPAEES. B, JBERS
IRBERERW, BERAINRRINARERE T ZU, ARXRE
ROZ R

— IR (ERiE)

FSRARRNSERTER, DHERsnstR — IEE
mpEsEs | mEE
=307

MHETR — 2292 | e MR oo 28 ey
HiEZ HETE
m%u&m&m s VIR
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f=ma = m= %;
EFFRNBIAVASERERFZEARRNIR, FENE, &l
AREH, RE XMEAKREHIE. ERE" ZIHE
BIET, MGEEEH—, ZFUBEES, (UXERAAIE
RMIANELE.
— B
ZuYIEhR) “BRXR": LN« =EY p SIS HZ
BRI ZIEEERYIIRISETRE, Lk, £ ¢ — w BIZl, 1R « X, 8B
ANJREREE p BEE AP, 1R « R/ BBARFEE
p BIEHRNXIERIRES. XM HE—RBII MO DR,

Y -
structural equation Y =aX+p8 =5 X = B
a

isease?
4Russell: On the Notion of Cause. 1912.
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Levels of Causal Modelling

Predict
Models ii.d. 1anging physical
) distr. or factual . from data
setting . . insight
Interven- questions
tion
Dn‘ferehtlal v Y Y Y ?
Equation
Sructual
Causal Vv v vV ? ?
Model
Causal
? ?
Graph v v X ‘ /
Statistical
Model Vv X X X v
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EEZNESES

. /_\

& ER% HE * R R
~— ~_
IKERME u - IKES /=
Pl ~
SEKITHE - ~ TEYIIRIICO- — - BESIK
X;—o Xi 1 X; Xi+1
Y o Y1 >< Y >< Yin
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https://arxiv.org/abs/1611.06221

Circular Causality

action
feel bad overeat
\_/
feelings
Alice can't
V show respect \e“"gs
Alice feels Bob feels
unloved disrespected
fee“n\ Bob can't %
show love
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Police aggressively

. feeli
V defend themselves N

Police feels Black people feels
threatened threatened
feeling\ Black people aggressively %
defend themselves
encoding
Meaning Use Signs
decoding
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Google's PageRank

Google's founding philosophy is that we don't know why this page is better
than that one: If the statistics of incoming links say it is, that's good
enough. No semantic or causal analysis is required.

> In a network with n nodes, assign all nodes the same initial PageRank,
1/n.

> Choose a number of steps, k.

> Perform a sequence of k updates to the PageRank values:

— Basic PageRank Update Rule: Each page divides its current PageRank
equally across its outgoing links and passes these equal shares to the
pages it points to. (If a page has no outgoing links, it passes all its
current PageRank to itself.) Each page updates its new PageRank to be
the sum of the shares it receives.

— Scaled PageRank Update Rule: First apply the Basic PageRank Update
Rule. Then scale down all PageRank values by a factor of s. This means
that the total PageRank in the network has shrunk from 1 to s. We
divide the residual 1 — s units of PageRank equally over all nodes, giving
(1 -1s)/n to each.
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Pagefank

A

1/3

1/2

N|—=| O

3/16

4/13
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The End of Theory: The Data Deluge Makes the Scientific
Method Obsolete — Chris Anderson

> All models are wrong, but some are useful.
> All models are wrong, and increasingly you can succeed without them.

> The big data, along with the statistical tools, offers a whole new way
of understanding the world.

> Science can advance even without coherent models, unified theories, or
really any mechanistic explanation at all.

> Correlation is enough.

Question: How to distinguish between patterns and causality?

310/ 954


https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/

NIEFEENZRY JohnFrum =2
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From “find-a-word” to Conspiracy Theory ©6°

=

—
—| Q.| T

| 3

— < |S | |0

0w | Tl a|c
O/ ®d® N | O | >

O | 3
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Ramsey in the Dining Room

Problem (Complete Disorder is Impossible!)

> How many people do you need to invite in a party in order to have
that either at least n of them are mutual strangers or at least n of
them are mutual acquaintances?

> How may we know that such number exists for any n?

NN

e
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Correlation Supersedes Causation?

> How to distinguish correlation from causation?

> How to distinguish content-correlations from Ramsey-type
correlations?

> Ramsey-type correlations appear in all large enough databases.

> A correlation is spurious iff it appears in a “randomly” generated
database.

> How “large” is the set of spurious correlations?

> Most strings are algorithmically random.

P({xeX" : ? <1—6}) <279n

> Most correlations are spurious.

> It may be the case that our part of the universe is an oasis of
regularity in a maximally random universe.

Complete Disorder is Impossible!

For sufficiently large n and any x € X", if C(x) > n — 6(n), then each block
of length logn — loglogn —log(6(n) + logn) — O(1) occurs at least once in
X. 314 /954


https://www.cs.auckland.ac.nz/~cristian/crispapers/fos2016.pdf

Correlation does not imply causation

I

I e
g
=z
B
o
&
Legs 1Q
ICE CREAM SALES
> Eating ice cream is positively associated with deaths from drowning.

v

Married men live longer than single men.

v

Sleeping with shoes on is strongly correlated with waking up with a
headache.

v

Women with long legs tend to have higher 1Q.
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T USED T THINK, THEN T TOook A | | SOUNDS LIKE THE
CORRELATION IMF'LJED STATISTICS CLASS. Cm'ss HELPED.
CAUSATION. Now I DON'T, WELL MH‘fBE

ST

X~Y =5 X->Y

Statistics are like bikinis. What they reveal is suggestive, but what
they conceal is vital.
— Aaron Levenstein
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Statistical Concept vs Causal Concept

Statistical concepts: correlation, regression, dependence, conditional
independence, association, likelihood, collapsibility, risk ratio, odd
ratio...

Causal concepts: randomization, influence, effect, confounding,

disturbance, spurious correlation, instrumental variables, intervention,
counterfactual, explanation, attribution...

KAITENERE DT P(y,x,z) ERWTH P(y | do(x), z), BRIFFIISF L
ERFNR, FLanERE.

> 5 RRECERBUAET—LRRMTR.

> No causes in, no causes out.
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3 EKF Hans Reichenbach 1891-1953

> Correlation does not imply causation. %
> Reichenbach: No correlation without causation.

Reichenbach's “Common Cause Principle”

A correlation between X and Y cannot come about by accident. If X L7,
then either X causes Y, or Y causes X, or X and Y share a common cause
Z (or any combination).

Z VA Z
X—Y X<V Y\ Y\ Y\

X Y X Y X Y

Theorem
The Markov Condition implies the Reichenbach’s common cause principle.

B X LY FIE/REEREM, X 1 Y ZEEASIHERIRER, BBHREERE
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Correlations®

If X is correlated to Y, then
» X causes Y, or

» Y causes X, or

> X and Y are consequences of a common cause Z, but do not cause
each other, or

» X causes Z and Z causes Y, or

» X and Y cause each other, or

> sample selection bias, X and Y are correlated conditional on Z, or

> data could be defective, or

> it could be a (Ramsey-type®) coincidence, or

> quantum correlations of entangled qubits (quantum correlations

cannot be attributed to latent variables), or

> mind-matter correlations?

5Calude & Longo: The Deluge of Spurious Correlations in Big Data. 2017.

6 Atmanspacher & Martin: Correlations and How to Interpret Them. 2019.
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Digression — Local Hidden Variables & Bell Inequality
X H Y

P(a,b|x,y) =2, P(a|x,h)P(b|y,h)P(h) entails the Bell inequality:
E[AB|X =-1,Y=-1]+E[AB | X = -1,Y = +1]+
E[AB|X=+1,Y = -1] -E[AB | X = +1,Y = +1] < 2

where A, B, X,Y take values in {+1,-1}.

> FMMIERFER Alice F1 Bob AR AIZWEISREHRENR H BIHL
. ZTE A B DRHEAT Alice F1 Bob XHEWEIAIRIFHIT—IN
WERIER. X B2—MEFEMSEL, RET Alice NFMNEIAFFHT
BRFENIE; ¥ X Bob tH3H{LL.

> WRAEEETFHEPHER, TLEE 2v2.

> XA SRELHMENIEE H JLEERNSTR FRBRESIRE, &
8 {A, X} L{B,Y}|H.

> ggﬁ*ﬁﬁmﬁiﬁmﬁéﬁ’ﬂﬁ%ﬁﬁ ElIRBKEE=ETPNEE
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https://arxiv.org/pdf/1207.5103.pdf

Should we abandon locality, realism, or freedom?’

Yip o (i) TNEBRE TR (x1,x2) T, RIF u; BIBEER. XME
SER TIEMRIE, BMRE T BEERNEFEL.

> BiEMRIE: — M NFERRNNEEAEZES— M RFEiEl
EAMABIFNE, B Yy, x, (u1) = Yo, (1), Yy xo (u2) = Y, (u2).

> R, L. MEREERET, IWRAEFELMIZ.
157_%?7]?—43, JHJJ_'\T%_E_IU\EYEU 2V/2.

Alice’ s\ Hldden \ /Bob s

measurement g Common ‘ measurement
choice X " Source H/ choice Y
- I X 1\,7,/
/TN

St e
\oueoms/ \gueems/

"Chaves et al. “Causal Networks and Freedom of Choice in Bell's Theorem.”
321/954


https://arxiv.org/pdf/1207.5103.pdf

HETR? AEEE=S RN "BTHER"”

FSES EpRES ISt
X — H Y
A B
\ /

HRRE?

AR ?
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https://iopscience.iop.org/article/10.1088/1367-2630/17/3/033002

Digression: SRISHIAEEIRAY "RILSE"

Example

1914 5, —(UfEEREMAISERTHE, FHISRA T A mRIRREE
. FORHRRERR, A ZNEIRA. BEE, A TERIHE

\\\\\

PR, 127 ) LAIRE A 2t LRI A BRI —RERE!
Remark: RSN, IS RKENAREETA TSR, BE6—HER
MAYHEESRKER. ({EXFREXTTIERT I )

i)

B

ok
Be

ERRAIREE

ESEES

(5F
AYZS (ZELR)

HY
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?
Causation = Correlation

Remark: XFPSIFHEERETE.
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Digression: AMMIJ/9+AE TEBX, MIEER?

> ERFURMELLHE
> DIRERON: SRR, ESERIAL. FEERN, BN, AJ{EHER
W, ESCEmA. SR, IRAEES
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1O 7= X0 | e R

Granovetter YR RIETY:

> AN 3HERET 100 ATUNTEL, BAEBE— NN EEMMER
mAYEHE, EFRENTE, STFEENREE. 100 ARIEREM 0 F
99 ZAMEE, 0 SELBEKIETIAEE, 1 SIREE, ... BREET
79 100 ABIKESN.

> B E%’%EE A ERE—ZERIE, MIERNERER 4 A, ZREEREN
3HBIA
— 50‘?)%9#)\5!%1% ENERNRITEER T

BENEMANESAMIET .

> %F/UIJAQDH%%%UEI?
— H2FE. =S, FERRRIERIFREND, HEREE. BiR
/7'5 ZFIRR. BUasE. EEEN. EKE. EE IS
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Causal Inference

Controlling Confounding Bias References978
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Causal Bayesian Network

Definition (Causal Bayesian Network)

Let P(V) be a probability distribution on a set of variables V and

P(V | do(X = x)) denote the distribution of V after intervention on a
subset X. A DAG G is a causal Bayesian network for P iff for all X c V
and x we have:

1. P(V | do(X = x)) is Markov relative to G
2. P(vi|do(X =x)) =1 forevery V; € X
3. P(vi | pa;,do(X =x)) = P(v; | pa;) for every V; ¢ X

How to calculate interventional distributions? — Truncated factorization

P(v | do(x)) = HP(Vz | pa;, do(x)) = H P(vi | pa;,do(x)) = I;I P(v; | pa;)

P(v;o) =11 P(v] | pa;)P"(vi | pa) for soft |nterveXn’Ec|on o =P (v |pa’)
J#i

Theorem

The causal graph G induced by the SCM M is a Causal Bayesian Network.
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Remark

> A causal Bayesian network is a Bayesian network with the requirement
that the relationships be causal.

P(v; | pa;) = P(v; | do(pa;))
P(v; | do(pa;),do(s)) = P(v; | do(pa;)) for SV \ (V;UPa)

» An SCM induces a CBN.
A mechanism f; : Pa; XU; — V; and noise distribution P(U;) induce a
conditional P(V; | Pa;) = > P(U;).
U;:Vi=f; (Pa;,U;)
> CBNs cannot be used to reason about counterfactuals, whereas SCMs
can.
X P(Y|X)=r y
Uy
¥
X Y

fr:Y=XAUy and P(Uy) =r
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Remark

> In SCMs, causal relationships are quasi-deterministic.

> In contrast, all relationships in CBNs were assumed to be inherently
stochastic and thus appeal to the modern conception of physics,
according to which all nature's laws are inherently probabilistic and
determinism is but a convenient approximation.
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Intervention (do-operator) in CBN
> The factorization joint probability distnribution
P(X1,.... Xy) = | | P(X; | Pay)
» The do-operator® -

n
P(X1,..., Xy | do(X; = x1) = [ | P(X; | Pa))
j=1

Xi=x;
J#
P(x1,....xp) o
et if xs = X
P(x1,...,x, | do(x})) = { Plxilpa) =
0 otherwise

> The post-intervention distribution can be given by marginalization, or
by SCM,
Py (Y =y|do(X =x)) =Py, (Y =y)

8Soft intervention:

n
P(X1,..., Xy | do(P'(X; | Pap)) = | | P(X; | Paj)P'(X; | Paj)
1
i
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EER%MMN — Total Effect

» for continuous X,Y:

TE = OE[Y | do(X = x)]
ox

> for binary X:

TE = E[Y | do(X = 1)] —=E[Y | do(X = 0)]

U U
. l
X ——vY X=1——>Y

E[Y | do(X = 1)] = " fr(1,u)P(U = u)

Remark: Yi(u) = fy(1,u) can be taken as (unit-level) counterfactual.
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Causal Effect — Examples

Example: Inferring the effects of any treatment/policy/intervention /etc.
> Effect of treatment on a disease
> Effect of climate change policy on emissions

> Effect of social media on mental health

Joke: BRI WMl EFREHEHIFGRIMRE 0.01%, TREFIUFRECHE
HAEZ LKA ©

> X and Y are associated iff
Fe,x" :PY | X=x)#PY | X=Xx")
> X is a cause of Y iff

Jx,x" : P(Y | do(X =x)) # P(Y | do(X =x"))
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v

Examples

Z Z
v NN
P(y | do(x)) = P(y | x)

X —Y
P(y | do(x)) = P(y) # P(y | x)

Z
X Y
P(y | do(x)) = P(y) # P(y | x)

Z
What about / \

X

?
Y
P(y | do(x)) =7

Y
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Perturbed Graphs

“Thinking as acting in an imagined space.”

> Gx perturbed graph in which all arrows to X have been deleted
> Gx perturbed graph in which all arrows from X have been deleted
G w Gx = (j/

X —7Z ——Y

Uxz W\ GZ/W\
X 7/ —— Y X — 7 Y
G?,Z w
X y4 Y
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Eliminating Confounding Bias — The Backdoor Criterion

To deconfound X and Y, we would like to find a set Z, such that,
> it blocks all spurious paths from X to Y;
> it does not block any of the causal paths from X to Y;

> it does not open other spurious paths.

The Backdoor Criterion

A set of variables Z satisfies the backdoor criterion relative to an ordered
pair of variables (X,Y) in a DAG G if:

1. no node in Z is a descendant of X; and
2. Z blocks every backdoor path (a path between X and Y that contains
an arrow to X).

Remark: Frontdoor path: a path between X and Y where all the arrows
point away from X.
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> There are no backdoor paths.
» We don't need to control for/condition on/adjust for anything.
> It will lead to disaster if we controlled for B.
Example:
> X: I
> Y R
> A ESERBSINER
> B: it/ 2
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vV vV v vV VY

Example
A C
NS

X Y

There is one backdoor path X « A > B« C - Y.
This path is already blocked by the collider at B.
We don’t need to adjust for anything.

It will lead to disaster if we controlled for B.

It's all right to adjust for B if we also adjust for A or C.

B: ZEWAIER; X: ¥R v: fvfs A: JIHSAERISE, ¢ &2
REER=IR
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[&1 JIZ1E Backdoor Adjustment
Gy  Z

G z Gx z
OO\ N\ X/ \Y

[ox}— X Y X Y

The Backdoor Criterion

A set of variables Z satisfies the backdoor criterion relative to an ordered
pair of variables (X,Y) in a DAG G if:

1. Z contains no descendant of X; and

2. Z blocks all backdoor paths. i.e., (Y L X | Z)Gy.

Backdoor Adjustment: If such Z exists, then

P(y | do(x)) = ) P(y] do(x),2)P(z | do(x))
= D POl do(x),x,2)P(z|do(x)  (ox = X =x)

=Y POy |x2P() (Y Lox | X,Z and Z L ox)
Z
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Simpson’s Paradox — Should we treat scurvy with lemons?

Recovery No Recovery Total Recovery Rate

No Lemons
Lemons
Total

20 20 40 50%
16 24 40 40%
36 44 80

Table

. P(recovery | lemon) < P(recovery | no lemon)

Recovery No Recovery Total Recovery Rate

No Lemons 2 8 10 20%

Lemons 9 21 30 30%
Total 11 29 40

Table: P(recovery | lemon, old) > P(recovery | no lemon, old)

Recovery No Recovery Total Recovery Rate

No Lemons 18 12 30 60%

Lemons 7 3 10 70%
Total 25 15 40

Table: P(recovery | lemon, young) > P(recovery | no lemon, young)
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Resolution of Simpson's paradox — The do-operator

> What is the sailors’ probability of recovery when we see a treatment
with lemons?
P(recovery | lemon)

> What is the sailors’ probability of recovery if we do treat them with
lemons?
P(recovery | do(lemon))

> We should treat scurvy with lemons if

P(recovery | do(lemon)) > P(recovery | do(no lemon))
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Resolution of Simpson's paradox — The do-operator

Age

Lemon ﬁ@

P(recovery | do(lemon)) = ZP(recovery | lemon, age)P(age) = 0.5

age

P(recovery | do(no lemon)) = Z P(recovery | no lemon, age)P(age) = 0.4

age
The total effect:

E[recovery | do(lemon)] — E[recovery | do(no lemon)] =0.5-0.4=0.1
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Simpson’s Paradox

0

00002, 6060000
Y090 002G, 300,
0P 800903579 5302,

Q0300P St 09R00%" 0
e IR0
0596000660 @OWQ
Y 990990 002N 00 &

Cholesterol

Exercise

Exercise

Figure: Exercise appears to be beneficial (downward slope) in each age group but

harmful (upward slope) in the population as a whole.
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Simpson’s Paradox

< Exercise ~ Cholesterol

E[cholesterol | exercise] > E[cholesterol | no exercise]

E[cholesterol | do(exercise)] < E[cholesterol | do(no exercise)]

> FRKHARGS.

> NAZIKIE " 8.

Problem: A+ AEBEI=SERAB O KA TRE LD, SieskaD
ECFFFHIR?
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yrin 2l =SS I E

REBE BEERE EHEE
BEL| 93%(81/87) | 73%(192/263) | 78%(273/350)
55 2 | 87%(234/270) | 69%(55/80) | 83%(289/350)

1 RN/ EERDERKIER SRk

> BEAXNEERENRTEE 1

> BE1IEBMPY |do(X =1)) > P(Y | do(X = 2))
2. (RN /EENSEKIER “MESK

> HE 1 SHEME

> BE2EBM P |do(X =1)) < P(Y | do(X =2))

Remark: BZEF “&A" BFiAfy, MmN “[E" BFaT. B4, 7
S o EI S Et e A L G WUtz = i
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Why Temporal Information does not Help?

> MESETEBHX D ELEREZERKER. thal, SIEHE T
PEAEE TNRZAL ERRTREREE.
> HESEEAERHIERNIZIIEE Z HITRIE.
G w G2

N e
N I

N
N

N

Z

U U

| | |

| | |

| | |

| | |

| | |

| | |

| | |

¥ v Y \
X Y X > Y

> Z AJgERTF, tBrTsE T X.
> £ G P, FERIE Z.
> £ Gy P, ERIE Z.
Remark: ITRESRMNFEZFERRE.
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vVvvyvyyvyy

The Sure-Thing Puzzle

AREREW, HELFE. SHMNREN, HEXE. ERERMW 8&
HMTW. Bz, WELRE?

D'VR B B

RIB =R, M= EI 2, {05 2, M7 2
BEXEZE NI TR > 1
EHRERW, P(1| D) —3% > 5, LR
EHMEW, P R) =2 > 5, ERE!
BPUI|D'VR)=P(I) =2<i FREL
D’ 1 R’ FrazdE=.

PE|S)=r

P(E|S)=r

SNS' =0

P(E|SUS)=r AVEFEEFARY, Partition
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LTSRN The Sure-Thing Principle

PE|S)=r
PE|S)=r
SNS' =0

P(E|SUS)=r WEFFHIRY, Partition

Proof.
P(E|SUS) =P(E|S)P(S|SUS)+P(E|S)P(S' |SUS)

=r[P(S|SUS)+P(S|SUS)| (SNS" =0)

=r
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Theorem ([EISRFAERN Sure-Thing Principle)

RE(TIASEETERIDT, BRA, R ToMER 7B HEE M
AIBER, BRI PZSE ISR,

Proof.
1780 a IB-ATE—IEE s F e AU
P(e | s,do(a)) > P(e | s,do(a’))
1780 a ABZRIEE s B9 Fh:
P(s | do(a)) = P(s | do(a’))
A,
P(e | do(a)) = ZP(e | s,do(a))P(s | do(a))

> 3 Ple | 5,d0(a)P(s | do(a)

= P(e | do(a’))
o
Remark® IK=FIFMNILKIEFEFLE, BITRE TR NERIITIIER.
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Theorem (RERRZRABERN Sure-Thing Principle[Peal6])

MTHERLLERNES 5, WRRARBEIE S = s WESRT o - o/, T
BiTairsZES

P(s | do(a)) = P(s | do(a"))

NFEARFRNEE S SR, B wF o - o

Remarks:
1. HERUAZREERN.
— BERNAEE A, B FR3IFSHaL.
[A] [B]

AVB C C AcC BcC
C AUuBcC
2. HREENERFRKERL CDT.
2.1 VR /{5SHaRY Partition.
2.2 TR RS /(55
3. BITAEENR(ES, MaaE KB, iR1E “XEA" B9ARRE,
EEEEARRRIERS. bl FOT. (AEBR-R) 349 /954




FEZFIC & HBEERN
N THERRFEE R,
P(e|s,c) > P(e|s,c) S

P(e|s',c)>P(e]| s’ c) §</ \
x

P(e|c)<P(e]|c) C

IR TFRIEEE, (REPNIER a,a'.
> a: Draw samples at random until you get one for which ¢ holds, and
bet a dollar that e is true.
> a’: Draw samples at random until you get one for which ¢’ holds, and
bet a dollar that e is true.
Then a > a’ given s, and a > a’ given s’. But a < @’ when not konwing S.
Remark: TEFERIFICH P(s | ¢) = P(s | ¢’) RBIZ, BIFE LB
SIRL P(s | do(a)) = P(s | do(a’)) RRKIL.
Remark: 1RIEFHERN, T do TRIERMNATFEFERITEE.

P(e | do(c)) > P(e | do(c”))

E
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HWRBE=EfEE? EDT vs CDT

)0

> 18, MEECAHTRG, AMEHE, MEELAHTC.
> EE, isRERNIRRL. AN

> AE, HHENERL. R

> AE, EDT AjH; CDT kA
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RN & HERMHARR / SebENTERILER

EDT vs CDT vs FDT

______

'k 5 SV

> AEEIEER: EDT: & CDT: WA; FDT: B&.
> TRPENERE: EDT: &1, CDT: E¥y; FDT: &1E.

Remark:

)§ BN ES? KB RERFE ASETHERENITE. (vs
FAUCS) — WRANANBMGAR—HE XX, 3B YY. FrLA, fRARRIIZ XX.

> %MUI)J?FUIS{?
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EDT vs CDT vs FDT

» EDT
a* =argmaxE[U | A = a
a

» CDT

a* = argmax E[U | do(A = a)]
» FDT

a* = argmax E[U | do(IT = )]

TG (i —

VEVAV,
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R RN RS R SRAESRAVAREIE

Theorem (FEE/RN Sure-Thing Principle)

L. EDT /sl M TEBLEINSS s MRRREENE S = s BF
BRI a ~ o, MEMNZEEFE P(s | a) = P(s | o), NMHTEARFE
HIESH, B2RT o - o

2. CDT #di/EN: SMTERBLERISES s, NRRFEEIE S = s BT
H{mIF a ~ o, MBITHNARBE(SS P(s | do(a)) = P(s | do(a")),
NHERFIEHTESHT, BT o - o'

3. FDT #E/RN: M THERLENES s, MRRREENIE S = 5 B
#HwiF 7 - o/, MERRINEALRES
P(s | do(n)) = P(s | do(n")), MEEARFIEHIESH, LERET

i

Remark: REIRFRIELE FEARERHSEREN, EAFHEIRREZRN
TR
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vV v vV v VY

v

Remarks

TSRV ARBIERN.

Pearl FIRERENIE CDT FERRKEN.

EITREE, HEREN.

EATINAEE, CDT HasFRNIAL.

{824 CDT ZAY, MRt ETCRL!

EITABERENZ(ES, MRk XK, 1R XA AR,
REEEAEIRKIERLS. tad FDT.

BENETIXEEM KA

> BS P(s | do(a)) = P(s | do(a’)), 1B P(s | a) # P(s | ') T"—EHE=

RENNEREREX. EEENESEREXZE, TsERFEER
EXEXLI.

EDT IR(SREMRFEXR; COT iIRFIBIEKEK; FDT RIBRARAHIHIRER
BEHIES.

HERNARIE T RRIEFCHIARIREN, MR T RRIESR.
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1780 vs B4

> EHZERD R RBIRERZIE.

1TENER T BEB I ENX LR AT TUETE.

R £, 1Ta0A~ 2R —ER

BX4F EDT ki, (7o EERTAMA, IREHHRBXA.

X3F CDT Kift, {TalIFRRIA, RREBBEMNEREES, REHT

sIRIESR, M TEIRIER.

> 3F FDT Kin, {TaIBEEHRE, ERRTSEM TaIRKETIRR
. REREREEHES, BN, ESHERESESRR
FIXRERHIZE.

>
| 4
>
>

-
A
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Example — Lord’'s Paradox

Wg Wr=W,

/v‘}l\

-1 I
 Diet W)
ﬁ > et l /

:WI

Wo
> BAFIBTIREXRERISFN? P(Y | do(D)) = Z P(Y | D,Wp)P(Wy)

> RITFR 1 B A/B XT%E—?HE$1’]1E@E§E§7JJ
P(Y|D=A) =P |D=B)

> FIHER 2 WFE—EAFHAERENERRR, |iE B AR
IIREEATEIE A HIRFIYARE.
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Simpson’s Paradox — Every statistical relationship
between two variables may be reversed by including
additional factors in the analysis

1. HARIRIARERET
2. MRRIE “FR" BE, 81 "FR" ROEFEEMERINESGE.
3. WRBRIE "HKEKRN" BE, 81 "FiR"-"HKERN" HREZEH

YRR PR SRET

N -
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Proxy Variable ({{IEZT =)

Conditioning on the covariates should close all non-causal paths that

transmit spurious association while leaving causal paths open.

However, it is unlikely that a single proxy could perfectly measure a

latent confounder.
Gq

SRS

X - Y X - Y

> In G1, the proxy P captures all aspects of U that confound X and Y.

» InGg, X +«—P —Y and X «--——- U --—-—» P — Y

are closed if we adjust for P, but X <--- U ---» Y s not entirely

closed.
359 /954



Bl JIRLE Frontdoor Adjustment

X —7Z —Y X 4 Y

The Frontdoor Criterion

A set of variables Z satisfies the frontdoor criterion relative to an ordered
pair of variables (X,Y) in a DAG G if:

1. all directed paths from X to Y go through Z,
2. there is no unblocked backdoor path from X to Z
3. all backdoor paths from Z to Y are blocked by X.

Frontdoor Adjustment:

P(y|do(x)) = D P(z|x) ) P(y | 2,x)P(x')
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Does Smoking Cause Cancer?

@ —(_ Cancer

" Gene
7 - --xX

N

7
'
//
A

" Gene
7 - --xX

P(c | do(s)) ~ P(c|s)

P(c | do(s)) = P(c)

P(c | do(s)) = noncomputable

P(c | do(s)) = computable
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NG - S
<Smoking>—>(frab—><§ance[:>
Smoking leads to Cancer only through the accumulation of Tar
deposits.
The smoking Gene has no effect on the formation of Tar deposits.
We can estimate the causal effect of Smoking on Tar, because there is
no unblocked backdoor path from Smoking to Tar, as the Smoking «
Gene — Cancer « Tar path is already blocked by the collider at
Cancer.
P(t|do(s)) =P(t]s)
We can estimate the causal effect of Tar on Cancer, because we can

block the backdoor path from Tar to Cancer, Tar « Smoking « Gene
— Cancer, by controlling for Smoking.

P(c|do(1) = )" P(c|t,5)P(s)

362 /954



> |t allows us to adjust for confounders that we cannot observe,
including those that we can't even name.

» However, if we draw an arrow from Gene to Tar,

" Gene
//\‘r,,x\
// | ~
-~

S A /i\ o~ D
( Smoking _———(Tar Cancer
then the frontdoor formula is invalid.

» The sub-mechanisms X — M; — Z and Z — My — Y are isolated,
and the original causal effect can be identified by composing them.

|
|
A\ ~<
X<~ M 4

P(y | do(x)) = ZP(Z | do(x))P(y | do(2))
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CER CHE
RN RN
N Ve N

7 N 7 N

Ve N Ve N

— 3 L \— E— L \—
Gme) (R R %
:g \

@% *fgi“ %*@@

To adjust for the confounders we
> need to know what the confounders are

> need to be able to measure them

364 /954



U

l
X —»5
X _

BLIEFRIFEIC Surrogate Paradox

PS=1]UX) P =1]U,95)
X=0 X=1 S§=0 S=1

U=0 098 079 0.00 0.8

U=1 002 099 0.98  0.99

PU=1)=07 P(X=1=05

> TE(X > S8)=P(S=1|X=1)-P(S=1]X=0)=0.622

> TE(S—>Y)=P¥ =1]do(S=1))-=P¥ =1|do(S=0)) =0.301

» TE(X ->Y)=Y,P)PY=1|U=u,X=1)-3,Pw)P(Y =1|
U=u,X=0)=3,Pu) S, PS=s|U=u,X=1)P(Y =1|U=
u,S=85)-2,Pu) X PS=s|U=u,X=0)PY=1|U=u,S =
s) = —0.04907
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BLIEFRIFEIC Surrogate Paradox

ot
. T

X — S —Y
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Paradoxes are the watchdogs of our hidden assumptions

> Berkson’s Paradox: Why hot guys tend to be jerks?

X / Y @;nw
Z

> Simpson’s Paradox: A trend appears in several groups of data but
disappears or reverses when the groups are combined.

X

Cholesterol
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> EELH, BREEENMIETAIASBELIE T RERALIES.
> BEMNZEEERIEE?
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Philosophy — Counterfactual Approaches to Causality

> Hume: "We may define a cause to be an object followed by another,
and where all the objects, similar to the first, are followed by objects
similar to the second. Or, in other words, where, if the first object had
not been, the second never had existed.”
> Lewis: “A causes B" iff “B would not have occurred if not for A"
“if it were the case that A then it would be the case that B” A 0— B
iff among all A-worlds some B-worlds are closer to the actual world
than all =B-worlds.

wirAo> B < f([A].w) c[B]

where f(A,w) is the set of A-worlds which are most similar to w. 150 054



|I3[A Attribution

“Half the money | spend on advertising is wasted, the trouble is |
don’t know which half.”

— John Wanamaker

> Your Honor! My client (Mr. A) died because he used this drug.

> Court to decide if it is more probable than not that Mr. A would be
alive but for the drug!

P(aliveno-drug | drug, dead) > 0.5

What's the relationship between legal/moral and causal judgment?
370/954



WS Necessary Cause

“C is E's but-for cause: C is an antecedent but for which E would not
have occurred.”

BlF: Alice FAZYIHE T IHMIEE X = 1, Bob TEXRPIRAZHATE
Gvy-=1
— YNER Alice JRIEEHEIE X =0, Bob j%5E ¥ = 0 IREZE?

PYx=0|X=1Y=1) (Probability of Necessity)

Without hindsight (knowing what happened in the actual world), there
is no difference between P(Yx—g = 0) and P(Y = 0| do(X = 0)).

Suppose we observe that X =1 and Y = 1 (hindsight). Then
P(Yxeo=0]X=1,Y=1)#P(Yxeo=0] X =1).
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7253 & Sufficient Cause

> flF: RF Alice #§ Bob FF7—H8, i8F]H, {B Bob {ERbBEIRAHHE
IR IRE.

> IRI8 Alice ;[RFFHE X = 0, Bob i®FL Y =0, BPA, Alice FFIE X =1 &
SH( Bob 5 ¥ = 1 BIRBEEZH?

P(Yx=1=1]X=0,Y =0) (Probability of Sufficiency)
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Probability of Necessity and Sufficiency

1. Effect of Cause TE, CDE, NDE, NIE, Exp-SE,, ETT, PE, PCE, . ..
2. Cause of Effect PN, PS, PNS, PD, PE

Remark: Absence of total effect does not imply absence of individual
effects.

PN =Py, | x,y) = Z P(u|x,y)

u:Yyr (u)=y’
PS:=P(y, |¥,y)= ), P|x.y)
u:Yx (u)=y
PNS = P(y1, Yy) = > P(u)

w:Yyx (u)=y,Yyr (u)=y’
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Computing Counterfactuals

Steps for Deterministic Counterfactuals — Deterministic
1. Abduction: Use the evidence Z = z to determine the value of U

2. Action: Modify the SCM M = (U, V, F), by replacing the structural
equation for X with X = x, to obtain M, = (U,V, Fy)

3. Prediction: Use the value of U from step 1 and the modified SCM
M, from step 2 to compute the value of Y,

Steps for Probabilistic Counterfactuals — Probabilistic
1. Abduction: Use the evidence Z = 7z to update P(u) to P(u | 2)
2. Action: Modify the SCM M = (U,V, F), by replacing the structural
equation for X with X := x, to obtain M, = (U,V, Fy)

3. Prediction: Use the modified model (M., P(u | z)) to compute the
probability of Y,

P(Yx=y|Z=2)= > Plz)

uilx (u)=y 374 /954



Example: M D — (=A 0> D)
Court Order U U

| | |

Captain’s Signal

ZANVAN

A B A=0 B
Death D D
Model M Model M4—¢
cC=U cC=U
A = C A = 0
B = C B = C
D=AVB D=AVB
Facts: D =1 Facts: U =1
Conclutions: U,C,A,B,D Conclutions: U,C,-A,B,D
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Twin Network

U
. / \ .
<N N
A B A* B*
~N ~ 7
D D~

Remark Ux @

The standard rules of d-separation
can be used to determine
independence relations between
variables in counterfactual queries.

Yo LX but Yo LX|Z

~ e N — X
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238 I

> (HA5 v d-DBENETEEDRS Uy d-DE.
> By = fy(pay.uy), Ypa, BIBEERETF Pay EES pay AT ¥ AIHEER.
MR Uy BRINEMIEIZIRR, FBA Yoo, HBIRMIXFIHIIXE.

v

Ux
X/ X
| e
M
l/UY\l
Y y*

Uy LX|{Y"Z"} = Y, L X|{Ys,Z}

Uy LUz |{Y,Z} = Y, LZ,|{V.Z}
Y*LX|{Z,UzY} = Yy LX|{Z Z,Y}
Y LX|{Y,Uy, Uz} = Yy LX|{Y,Y,,Z}

BN
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ZEEE 4 — Example

X *

laVa\

Z *

,/\,

Y Y*

1. U LU [{Z,X} = Y, L Z:|{Z,X}
2. Y. LZ | Z
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Twin Network — Counterfactual as functions

> Computationally we can write the three step counterfactual process in
one single functional assignment.

1. Abduction: u = fy’l(y, pa) by inverting the mechanism y = fy (pa, u)
2. Action: intervene on the parents Pa = pa*
3. Prediction: y* = fy(pa*,u)

> becomes
y* = f(pa®,y,pa)

N
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Why firing squads exist?

Court Order Court Order Court Order = 1
l l l
Captain Captain Captain
/N \ \
A B A=1 B =0 B
NS N/ \ /
Death Death Death

> IBETHIERIRE
> BT SE
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vVVvyVYyYVvYyYyvyy

Why firing squads exist?

U

!
X/C\B
N

Assume P(u) = %

P(yy) = P(Ya(u) = 1)P(u) + P(Yo(u') = YP(u') = 5(1+1) = 1
P(yx) = P(Yo(u) = 1)P(u) + P(Yy(u') = 1)P(u') = 5(1+0) = 5
PN =P(y, [x,y)=P( lu)=0

PS=P(yx |x,y) =P(yx|u) =1

PNS = P(yx,y,) = P(yx, ¥ | u)P(u) + P(yx,y, | u)P(u') =
F0+1) =1
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The Banality of Evil — Hannah Arendt

> MEASRIE

> BHASIE
(conjunctive/disjunctive
scenario)

> MERRIRETRAFIE?

> MRBITTREAT?
The understanding of
mathematics is neces-
sary for a sound grasp of
ethics.

— Socrates
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» 885 X =05 H=1,Y=15
> IR ANSMEAEERGE, HERIEEIT

X =Ux Ux =0.5

H=aX+Uy Uy =1-05-0.5=0.75

Y =bX +cH+ Uy Uy =15-07-05-0.4-1=0.75
Yi-2(Ux =0.5,Uy = 0.75,Uy = 0.75) =0.5-0.7+2-0.4+0.75 = 1.9
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Question

> Why do we consider striking a match to be a more adequate
explanation (of a fire) than the presence of oxygen?

e

> Since both explanations are necessary for the fire,
PN(match) = PN(oxygen) = 1.

> |f the probabilities associated with striking a match and the presence
of oxygen are denoted pmatch and poxygen, then

PS(match) = poxygen and  PS(oxygen) = pmatch

> The fact that poxygen > Pmatch €ndows the match with greater
explanatory power than the oxygen.
Question: What weight should we assign to the necessary versus the
sufficient component of causation in legal /moral situations?
Causation + Foreseeability of consequences + Intention o Responsibili31é>{}?954



FIRSIAL, L vs IAFEEAE — Example

L BBETNEU

S PEEE———— i T~ -

CAEE 2~ RABK X - B Y
»

Iz
Z)

~

EIH‘

_

SRATIFETISHRSEEM 10% A BEE, Fit TEAR
ATEI z. ESERETEK X. BAETERZY. P(Y. X
> RIBRITEUE RS (WEIBIK) SEBEH=ERX:
PY=1|X=1=05  P¥=1|X=0)=0.26
P(Y=1|Z=1=08l, P¥=1|Z=0)=0.36

> B, BEEBRARSLETIERE.
> NElfEHPEID: BXMRTRERAET, EB SR BEtmEAR
& HERERRMN, SRATLUSE B SmAIERIERELD 15%.
-023<TE(X -»7Y) <-0.15
> BEAHAEID: ENREWEIBRETEIR. 87855 &%E
Wzl IRABIK. PASEENHENIRELMERRESZH T%.
PYz-0=0]Z=1,X=1,Y=1)>0.93
PYx-0=0]|Z=1,X=1,Y=1)>0.93 385 /954
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RIERRANL, [ZZR5E vs AR ET(E — Example

B—TREK,

> 9% KNBE, IV RIRBERE MNEZaT, SR

> 1% NRBE, iaTRRBESER NEEar RM2BRE.
INBEERT, EESMME T X =1, ERIRBIEET ¥ = 1.

Y=X -Uy+(1-X)-(1-Uy) l B N
CEY Uy R

“WRAIEZIAT X =0, /NBRRBESIES ¥ = 17"
P(Yxe0=0]X=1Y=1)=1

S0, AF Uy ARI, B P(Y = 0] do(X = 1)) = 0.99,
P(Y =0 | do(X =0)) =0.01, FfLA, EERMTAREEFIBEHIHT.
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v

vvyyvyy

T vs [REIL

P(Yxeo | X=1,Y=1) vs P(Y|do(X =0))

P(Yx—o | X =1,Y =1) is about estimation of a quantity in one world
conditioned on observations in another world.

P(Y | do(X = 0)) is about estimation of a quantity in one world
conditioned on intervention in the same world.

P(Y | do(X = 0)) is about groups of units.

P(Yx—o | X =1,Y =1) is about a specific unit.

RCT will get us P(Y | do(X =x)), but not P(Yx=x | X =x,Y = y).
P(Y | do(X = x’)) is the average of counterfactuals over the
observable population.

P(Y | do(X =x"))
:/ P(Yx—r | X =x,Y = y)P(x,y)dxdy
x’y

:EPx,yP(YX:x’ | X = x,Y = y)
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TIARERSE vs Bl EEE

> In a deterministic world, for events to have been different,

1. either the laws of nature would have had to be violated, or
2. the background conditions would have had to be different.

Payx Ux ---- Uy
|
* Y y
X=x X X*
Y Y Y*

> David Lewis: counterfactuals are to be evaluated by imagining “small
miracles”: that ensure those events which are counter-to-fact to occur
by locally violating the laws of nature, thereby disconnecting these
events from their causes.

> Pearl’s interventionist counterfactuals: “minisurgeries”.
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Problem (RZ#3RLFI8 Y. ANSRIRNZH, (RABLFRIEE? )

FHURSEL: A
[EifRESE: AJRES

=l ) i3 BNz E Ua C Us
2] Nz A B
" Y
A=CANU4
B=CAUg
Y=C—>AVB
C=1,U4=1,Ug=0,A=1,B=0,Y =1
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TFIAUREL vs [BIHAREL
IZky ~——— 18Nz 7
N N
> 1

DZE -— *EEZE I]ZE*

DZ*D ~— *EDZ*D -= *El]’z,'*ﬂ ___>DZ*5]\*

N e

_______ /tib R /E@x

\/ ~_.

DZE Da— *EDZE - *E[]ZE* u/Z_;E*
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TR ESE vs R ETKMB23]

u U -————-—--- u
RN 7| I
14 V* 1% v

. Interventional counterfactual: the factual world and counterfactual
world share the same background conditions u. Potential
contradictions between the factual outcome V and the counterfactual
outcome V* are resolved through changes to the mechanisms F (by
means of intervention), giving rise to the modified mechanisms F* and
submodel M*.

. Backtracking counterfactual: the factual world and counterfactual
world share the same unmodified mechanisms F, while the respective
background conditions u and u* may differ.

. what would Y have been, had X been set to be X = x’

. what would Y have been, had X instead been observed to be X* = x’
391 /954


https://arxiv.org/abs/2211.00472

T 5L vs [AlfE/REESE — Example
U
) / ~__ 3

<\ N
A B B
N e
D D*
D=1 = U=1= (Mg—,U=1)ED*=B"=C"=U=1
U----U*
e N
C c*
<\ PN
A B B*
N e
D D*

A'=0 > U'=0 = (M\U'=0)D"=B"=C"=U"=0
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https://arxiv.org/abs/2211.00472

What would have been,
had this person had a
beard?
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Backtracking Counterfactuals for XAl

Given

> a probabilistic causal model (M, P(U)) over variables X U {Y} with
laws such that Y = f(X);

> a backtracking conditional Pg(U* | U), e.g., distance-based.

Then “x rather than x” explains why f(x) = y rather than y” # y" if such a
change to y” would be most likely to have come about through x’,

x" € argmax Pgp(x" | y',x,y)
xl
Remark: RELHHRE = RARKEMREL
Remark: To find (sparse) feature subset Z c X that “explains” y = f(x),
we look for Z and 7’ # z such that changing z — z’ results in y’ # y, and z
and 7’ are close according to some distance d(z, z’).

7/ € argmax Pp(z’ | y',x,y) subjectto |Z|<k
Z/
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Counterfactual Explanation: Example

> Minimize distance d(x,x’) between counterfactual x” and original
datapoint x subject to constraint that the output f(x’) of the classifier
f on the counterfactual x’ is the desired label y’.

argmind(x,x’) subjectto f(x) =y’
x/

-
-
-

-
L

Data manifold

argmax Pg(z | x,y',x,2,5)
Z/
2—d(u,u*)
2 9—d(u,u*)

u

where Pg(u* | u) =

395 /954


https://arxiv.org/abs/2010.10596

Digression: [BI#EIER # 1% A E R

ct
A

Futlure

Past

Figure: EISRIERRBEIECHERIERE As < cAr

Remark: ENREEFNERAUEEEES LIR, FHTHISHRENZE
AJEERIRRKRBRER. WTEERIEM AT B, BA A E B HIE
BARK, B4 B A WERKEK, B4 AT B ZERBRARXE.
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B+ KR

My —— M>
N A
| illusion? |
| |
Py —— Py

WHAT'S THIS?
LOOKS STUPID.

SHUT UP,
IT'S COOL.

PHILOSOPHERS

FIELDS arrAnGED BY PORITY

_—
MORE PURE
SOCIOLOGY 15 PSYCHOLOGY IS BloleGy 15 WHICH IS JusT OH, HEY, T DIDN'T
JUST APRUED  JUST APPLIED JUSTAPPUED  APPLED PHYSCS, SEE YOU GUYS ALL
PSYCHOLOGY BIOLOGY: CHEMISTRY ITs Ni]\clE ™ THE \JAY OVER THERE.
BE ON TOR {

\% o EJ J

\ ] %

——t— —
MATHEMATICIANS

OH YEAH?
PROVE IT.

|

LOGICIANS

1%

SOCIOLOGISTS  PSYCHOLOGISTS

BICLOGISTS ~ CHEMSTS  PHYSICISTS
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Emergentism — More is Different!

BIRKTEBD 2.
— TELTEE

> BURAMUKT B8 2, MEAREIEREARRE.

> PRSI, KRR REERESEEAR.

> BTERMER L SRIHEHEE

> TEE%E’\J BRIAZEN, MEIE—NFFRIENE, X/ NEE LRI
KETH.

> REIX: BIRARRNRTERNER LXIEEHITIR. EAE
EeNERLEE AREERIRM. TEIFHMAIFER, BRHA
7. BIRAEIBEAERE MEARR ERIHEMMSERENIEIA
[EIERAYEEHE. S— D RATREIC/MNEPH FRIL IR A RIS B, FFAKT
ARSI RN EIEH ST, IXFMEIARIEESIZ AR
HRFREHTERERIE — B CHRE — AIRHE, XFMEIRERS
HUEHTAERY 7 SEARRY B — — MR RIRRE.
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B vs BRIz

> IRIE— I HZKEBERITEESE, JBMAR— I =T, 1
BENZXKEBESET.
> {REINT 641, B MSFENSKEBHETT.
> 8 AHAESEIT?
L. AACEEABINZXKEBHEETT.
2. B 641 BE=EL
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Emergence

. BN T TRRE

— BITERTHEE

— PHZFEN: BE, EH
. 55iEM: B TFEKRIER

— WA R

— BB

18

. ZERI: ZERIE

— ERRIERGE, KERRIE
— “EE-E R

— BEEATBELX
BN @, BIR XHE
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https://arxiv.org/pdf/nlin/0506028.pdf

AR="NEREIRS RN

SRR

L. 28 BalLliBRid TR5t

2. X935 EERERAAIFIIMRERTHE

3. i HERERFAHIVE (R) B

> 'fy%{jétggﬁgjﬁi Xpast ?}tﬂl«y\ﬁﬁ Xpresenty )”sWJ_{ X ZEE G‘EIE"J

> E—PEEHRERF, BREENERHMNLANERS v,
MEN SRR OIS AZEN LIRS ARG X

> WNREMEGERRS X 2 G-BER, MiRESERFS ¥ EAFRERKE
RMBEAIRRER X, I F—RIZIBHIRE Vv, BBA
RN RGFEETSRIAY.

X Granger-causes Y &= Ypresent £ Xpast | Ypast

G —autonomous

X2 > X1 - X
N
G —Causality
\\\\\\\\\\\\‘ \\\\\\\\\\\\‘ G
Yo Yy Y;

Xt+1

Yt+1
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INRISIRIL vs ORISR IL?

> 55BN MAZEEEER, RN_EREL, B EARRRL
> SREI: AR, M TER

EERITE. DGR K17
[ T EISR?
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INRICIEI vs ZMARISTRIL?

> BRENERGILR &ﬁ:\ L RFIEEN SN T RIEERIZNHE.
> EQTEE)E}KQH,/\EF‘E'JH R, TS EER TERELALI.
BHREE? 2R gER? ‘Downward Causatlon?‘
IR ERT, |$|ET_ bg)ﬁ\%iﬁﬁiﬁﬁﬂ, EERFIEINECH, &
BFEEEL, FaEFE.
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time
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ERESEN
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macro-dynamics

causal emergence:

E1(fm) > EI(fin)

fm

- -
micro-dynamics

o
£
£

s

=)

7

@
a
®
Q
o

t+1

macro

micro
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Erik Hoel's Causal Emergence[CH22]

Given a state space Q of size n, and a set of causes and effects C,E C Q.
> P(e| €)= Seec P()P(e ] ©)
> suff(e,c) = P(e| c)
» nec(e,c):=1—-P(e|C\c) and nect:=P(e]|C)
> we can define a determinism(FBEME) coefficient

log P(e | ¢) 2cP(c)H(e | ¢)

det(e,c) = 1+ s det = ;P(e,c) det(e,c) = 1— g
> degeneracy({&FH) coefficient
deg(e) = 1+% e%“ip(e | C) deg(e) = 1—Hf§g|nc)
> Effective Information
ei(c, e) :=log ;)((: || 2)) I:= ; P(e,c)ei(c, e) = [det —deg] logn

Remark: EI = <DK|_(
> Causal Emergence CE := Elnacro — Elmicro

CEC)>CEC

405 / 954


https://arxiv.org/abs/2202.01854

Erik Hoel's Causal Emergence[Hoel7|

> Assume some (uniform) Intervention Distribution (Ip).
> Applying Ip results in Effect Distribution (Ep).
Ep = Z P(do(c))P(e | do(c))
do(c)elp

> Determinism & Degeneracy

1 DL (P(e | do(c))||PMaxEnt) DkL(Ep|lIp)

det == — Z deg = —————=

" ol eln logn logn

> Effective Information is the mutual information between a set of

interventions (Ip) and their effects (Ep).
El:=I(Ip;Ep) = Z P(do(c))DKL(P(e | do(c))”ED) = [det —deg]H(Ip)

do(c)elp
> Examples: EI(My) =2, EI(M2) =0, EI(M3)=1
0010 111 L1 19
Lo 00 P11 P11,
Mi=1o 0 0 1 My=11 1 11 Ms=180 0 1
i1 11
010 0 SR 00 0 1

406 / 954


https://www.mdpi.com/1099-4300/19/5/188

Erik Hoel's Causal Emergence — Example

A sl

@ — o

O W=l
O W=l =
O W=l
_ o O O

1

CE = Elacro — Elnicro # 1 = 0.81 =0.19> 0
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° ° / ° ° >‘> . ° >—<:> °

[ ] [ ] [} [ ] 7: [ ] [ >—<:> [ ]

[ ] e —» o [ ] [ ] e —> 0
EI =2.3219 EI=0.7219 EI=0 EI=0.7219
det =1 det =1 det =1 det = 0.3109
deg =0 deg = 0.6891 deg =1 deg =0

> BRI BRI FRETENARRRASHREIIEA .
> BRI RRRSEIT FRAOREHEA .
> EHES, BRE, BREIAIEEAE. 1 = det - dog
> R ER TR AER.
> — S PMENKSHES NI ERNE A, WREBITHEAMEX
LoTgermbiTE A — M, MRS T HEE.
> — B, NE—MHERERE ShaXNEZ NIRRT, 21
SATRIXLMAN, FEHE T &

408/ 954



D EE DR
1(X1,X2;Y) = Unq(X1;Y | X2) + Unq(X2; Y | X1) + Red(X1, X2;Y) + Syn(X1, X2;Y)

HFR, Unq(X;Y | Xo) £ X, BIRBEREATE X, sRA%T v (95
SR Red(Xy, Xoi¥) 2 X, X HENERHREES ¥ MRS,
Syn(X1, Xo:¥) B X, X, BeAIRfE%T v (ORISR e
B 5 hEEE BEUIEN SEEE
— b MRRBEHR, X TFTERENIINZARER R ARSINE,
REEENRRAEE. TR URBAT R, BlE— RS
T, BARIIEARRIL.
— il NERICHRE— IR IRENECEN, WEER IR
MRS R A BEfRRRIISR, MBS

> HRUEERRERSEAANRESR.
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Partial Information Decomposition

1(X1,X2;Y)

Syn (X1, X2;Y)

1(X1;Y) 1(X3;Y)

1(X1;Y) = Red(X1, X2;Y) + Unq(X1;Y | Xo)
1(X2;Y) = Red(X1, Xo;Y) + Unq(X2; Y | X1)
I(X1;Y | X2) = Syn(X1, X2;Y) + Unq(X1;Y | X2)
I(X2;Y | X1) = Syn(Xy, X2;Y) + Unq(Xo; Y | X1)
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v

v

v

v

Vt -------------- > Vt’
\\
R b
supervenience | SN o I supervenience

. 1
1 downward causation 1
1 S 1
X; ~_ [X)
2 LN 2
X; X2
. temporal evolution .
X" Xxn

t

Emergence = Causal Decoupling + Downward Causation

= Unq(Vi; Xy | X;) >0 B, FEERBEN.

%Tﬂ‘l_.”l:llu Syn(Xta Xt ) > 0 Ej rr—.% %EJU
Syn(Xy; X)) > Unq(Vi; Xy | X,) fBERRAZ.

INRZRIMFHEI RN FEFRIFIIFRN, BY, JEA o c [n

la| = k, B Unq® (V;; X¢ | X,) > 0, WEFERTER.
R Ung® (Vi Vi | X, X)) > 0, NITEIEEISRARAS.
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From lIT to ®ID

What it is like to be a bit: an integrated information decomposition account of emergent
mental phenomena[Lup+21]

> KR AEE—MERNER, BERRE—REBANAE (FBK)
OID AERMANER, INFEZRXS ZXREIS2 00

Selfhood: X% “BI" 5 “NR" (ERMFHE)

Sense of self: X}YBHAUALE (MTER)

Hi8: SEEWERNAE, EREEFMEREKE, EESIGE
INEIEIR: S EVERLE, SNREANERFIEEEN

Causal decoupling

vvyNbNHE Y

R Consciousness
/ (@)
Total information

j_‘(\:onscmus butnon-self / (TDMI)
b ,//

Not conscious
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Algorithmic Fairness

> AABERD "BERF?
> NERERARIERE
> SIHEFRS
> SEEIARS | A28 S RITN AR FE X
> “BIEAR ATRERE:
> BARE FHILTERS, EREMEMKN, ICRILFEERS.
> AKESRL: FEEEZGI-REDN. it/
> BASHR: ABRATTRESEIERIZMREDSR. AR EEUETTRES IR
> BEAKINGTR: REDEEHARN)GEEED, FHERIR.
> BiERI: EIBEXSER

Real World Bias

impacts is reflected in

Algorithmic Bias

is acted upon by is exposed by

413 /954



Causal Fairness Analysis

L RERN: WNEIERFNARRE RE (B, BiE. ER).
2. AFFN: MIERESE AT ERTTNES.
3. APRR: R FRIRES, LR AT DAL
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EARIETN R AR E?

Pre-, In-, Post-Processing

ML Optimization Algorithm }—»

Predictor

Y« fyp(x,z,w)

A

Pre-Process:
D — D’ s.t.
X1Y

In-Process: ML Algorithm
with Fairness Constraint
Ton,x1 ()A]) =0

Post-Process:
yhir  7(7) s.t.
Ton,x1 ()A’) =0
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>

VV VvV VvV VYV VvV VvV VvV VvVYVYY

EAFR TN E AR AR IE?

BE—NMTEIRARKERICTFEN TR/ NIRRT, IZEIRIEFTNY

BILEXRSE AEREBRTILAGRRE. (REEHNEA. BASZE—
2B NBIRIRSE.

K2 A JBSE 200, ;RIS 800, 20%

EEA: E5E 250, ;&IBEE 1000, 20%

=2 A IBFE 3000, ;&IETE 600, 83%

SHEA: IBEE 750, &IETE 150, 83%

RANRFIR: o060 = 48%

BARFIR: i = 13%

BHR: BEEBERICEANESHIT EEBICFEARAIRE

43% > 13% BHREALNT?

BABIBIER: g3 = 70%

BABIRIRE: oot = 47%

EANBICHERESSHIR RS

70% > 47% I3
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1.
2.

AR TN R AR AR ?

L FH AT
> FmiHYE
> Nat%E
> TS
2. FRAYE
> FHAF
> RELNF

AL
MER

FICFREETIN ¥

> SR

> ZIEEENN

> BREERNN

> BB

> SCIR{RAAL

> RE|LRF

> FFEBRIREELLF
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E/BIEEEIRSE? Moral Decision

Moral agent need to have at least
1. beliefs about the world,
. intentions,

2
3. moral knowledge,
4

. the possibility to compute what consequences ones own action can

have.
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925 & Mediation
> THIBTRL A MR HIHLEI A7
HiE — BRI —— RIS X
HHig — AR C — RIE v
> IR SRR RN ?

[31:23:(m)
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> FRIAHAEIRERE?
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MTFHAYER — RIREHYEIERAA
CEpREZ

L

Q JJ:[EIlmﬁfEX o )\Bmﬁu?%ﬁM o )\BmJ:ﬁli-?Y P

> TR, FALEMFT LIRS RNEEER.

> (EIRIEERNSTT, AERD ARG, &b, B2t AL
NMERLEMBFEERERME—RIL (REE). XAEFEEZHRIFIL.

> WELIEMHEERERITE T EaiFt? B2 ERERR? 5E......

> H;& ERFITHIREEREEERIER, XEKRERIE T HNTE
2 M, NTifERT 7 EHZEREZR, iTENE X T ¥ BYEEN.

> (EIXTCEHEBR EHE N AYTETE: TR MR EREE S RIEEE
FERR, BT EREMIREH AT .

> MAEEHERNEESITT \RIfFLR.
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TR EFR RIS AR ?

BOREY

> IRIEESNRERECREL ERIE TIEXSE X B ¥ f9E18E
&, BEETFEA BARENHEEERFRERENS.
> XEBRBESIREFRIEAN?
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IREEMM Controlled Direct Effect

5 RANRESERR T MR 4h EftthEE—F ERBRIESSF
=7 o I
B M L

fair fair IT
_ . A
=) / LIS

unfair

AJLAERELTE M AREISEEEE?

E[Y |do(X =1),M =m] —E[Y | do(X = 0), M = m] 7x
SIEEEEMM (Controlled Direct Effect)
CDE(m) =E[Y | do(X = 1),do(M = m)] —=E[Y | do(X = 0),do(M = m)]

Remark: CDE(m) {&§F M = m.
Y. CDE(m)? HJgeEm/ K LIEHISLtE, TR FEIEPISE M.
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Example: {EFERIASREVFIE
CEfBEU

TS T

> YIRAMEERERIE, THAIREER.

> WSRRIE "R, NLZHRIRBES.

> IR R RRER ZEEHERERETFR?

> WNERIRIE "B #0 “EE”, W ERIREER(R.

> At AERRRIE “BRR" 1 FEE?

> IR MR X REER NEREN? (EREAE?)
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Remark: |BJ#ZIE4R

> B AT ISR LR F, MTTsZ It i JIB &k

B M.
> [EHEERIE O BEFRETLAN.
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BHIAEEEIN Natural Direct Effect
B MR X REER" MBI 5 or EIA? [EREISIIR?

@gg M
/ — X=0[x=1 Sy

CHEBIX CREY

> “FEAITRRSCIR 7

> SREIFFA AZBERIBEZER do(M = m). MEeHBEERLIRERIEM
A, BEIDE—E NEREMAINBEMY do(X = 1), Z—EAERE
MBI do(X = 0)

CDE(m) = P(Y =1|do(X =1),do(M =m)) —P(Y = 1| do(X = 0),do(M = m))
> BRI EXIRRSEIG " (RAEFEE, ARIISHRBEID B ERE S
> BB ABETURIRMS, (BEREARNIERHISSBRAIRER.

NDE = P(Yy, =1 |do(X =1)) = P(Ysy, = 1| do(X = 0))
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ESREEMN. Natural Indirect Effect

> {FE—R/NE, FEEEIER.

> IREIRREF 7 —RINVE, NIRRT TS T

> INEER, INEEESERE.

> RICEER, SETER, (RAINERNERBEET .
> BBA, BIVERNGFERRFRIERIL/INERIEF T ?

M
@L@w@

> (R RANINEARTES X = 0, THRGIVEER—HEE RN
M = My, BBACIERSBEHBIEPRID?
NIE = P(Yy;, = 1| do(X = 0)) = P(Yas, = 1| do(X = 0))
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Total Effect # Direct Effect + Indirect Effect

L

M=X
Y=XAM

> B X S{ESRWERES M AT, EERIERER Y.

> YIRS 2 IERY.

> (BEEIENE 0, BRI IEBASERRNE, 2970 A5 (E
H.

> [BEMNTEE 0, RAREGESEAYINE, Rt TR ER.
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The Attribution Problem

(EEZ
// —
/

/
»

@\ LSS

#E M

The observed disparity in TV = E[Y | male] — E[Y | female] could be
explained in different ways.

> Direct: The salary decision is based on employee's gender X — Y
» Indirect: Decisions were based on education X - M — Y

> Spurious: Nationality is used to infer the person’'s gender X & Z —» Y
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https://causalai.net/r90.pdf

BETHERRENFITFENX

A: BUREM. AROZAT TN RAINIZRESE, LhantEsl. fik. &
%, BE. = RE. KRR HNE

X: FBFRRANEHE

Y: IEFBROARES (GRED). BIgN, ¥ = 1 ®R “XMNAROZSER"

Y = f(X) B Y WEAER

FEit159% (Demographic Parity) Y1A

v

= vV vy

Ya,a' :PY =1|A=a)=PY =1]|A=4d)
2. M&t89% (Equalized Odds) Y L A | Y
Vx,a,a’,y :P(Y =1|Y=y,A=a)=P¥ =1|Y=y,A=d)
3. FNEYSE (Predictive Parity) Y L A | Y
Vx,a,a’,9 :P(Y =1|Y=9,A=a)=P¥Y =1|Y=9,A=d)
Remark: HILEGEFEALNFR, LA E=MirETTERSHE.
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[ZEESL/ S Counterfactual Fairness|MZP20; TZZ23]

CaemeEs o EwEz

» Predictor Y is counterfactually fair if under X = x and A = a and any
individual u.

P(?a/(u):)7|X:x,A:a)—P(?a(u):j/IX:x,A:a):O

where X = Pay and Y = f(X) is some approximation function of Y.
> Remark: The prediction should be the same in following two worlds:

1. the actual world
2. a counterfactual world where the individual belonged to a different group

> BEEER Y FI40E X TR Y = f(X) FERSEEATFHN. X
BHK A RNE.
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https://arxiv.org/pdf/2010.09553.pdf

RELAT vs BEBRNRELAT

> Counterfactual Fairness: Did gender cause the decision? —
Individual level

> Path-Specific Counterfactual Fairness: How did gender influence
the decision? Along which path?

Remark: Path-Specific Effect BJLAB{E NIE iZ{(EHEFERERIER.

M

.

v
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BRI & (A

(4 7D L BEEMA-SY
2. A A >R >Y
3. OJfRREME0 A > D > Y,

@ A—>D—>R->Y

> B A — ¥ HOBESRRARL.
P (¥1.R0.00.00) = P (Yo)
> BRI A — ¥ FEEEN A - R — ¥ BIERAL
P(Y1.81.00.00) = P (Yo)
> HEBRNREFLAFE
P(YiR1pgp0 | A=0,D =d,R=r) =P (Y| A=0,D=d,R=r)=0
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REE “iaRw"

> FIEE AR, 1§ NET X ABENERER!
> BiREdE, HHPEREN KE 2 ABEENRREERIR? B
HEIAEFE B2BIHESTFERE WMERER?
> FEBAMFECH axm" B0
ETT = E [Ygpg - Yrmse | X = BHE]
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ETT — ¥ BEH & ERBAN

> MR- AMBEEEER HEH (MARWE) IBE X ZSEE
EERATARRRN, BBAK X 1 ¥ ZEMFERSEF.

Ve YN
UX UY
[ e
X Y
Wim—rIL: X = argmax Y., B Y, = fy(x, Uy)

Remark: AELT RSB IEERAGAR ML AR, S8 v, L X.
> Example: NRRIKWNNBEE, EHREERES?
E[Y |do(X = 1),X = 1] = E[Y | do(X = 0), X = 1] x
E[Yi - Yo | X = 1] v
Remark: do EIFBHIARISHSFE, R RTFRSHHE, ETT
BRI N RRI R,
B8 P(yy | 2) # P(y | do(x).2). 4 Z FE X HISAS, —H18E.
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ETT — ¥ BEH & ERBAN

TE = E[Yl—Yo] vs ETT = ]E[Yl—Yo |X=1]

> TE H{REBRIALUERE X =18 X =0 B

» ETT ZAIEEHBEEEE X /Y

1. B ETT > TE B, SJLAGL5ERE

2. 3 ETT < TE A, afLABITIEREFRLIREMA

3. H{ ETT = TE Y, 2 BIRBEBEERMEE/12ERH
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Neurath's Boat

> Learning Causal Effect

> Learning Causal Structure
> What variables exist?
> What affects what?

ey

“We are like sailors who on the open sea must reconstruct their
ship but are never able to start afresh from the bottom. Where a
beam is taken away a new one must at once be put there, and for
this the rest of the ship is used as support. In this way, by using
the old beams and driftwood the ship can be shaped entirely anew,
but only by gradual reconstruction.”

— Otto Neurath
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Causal Discovery — Two Methods

X L (X1,X3)
X; AL X4 | X3

faithfulness and

. nce
independe Xy L X5 | X3 Mark g
tests X 1L X3 | X, arkov \

i.i.d. sample

)

read off

..... \/
= filM)
= fz(Nz) —/{
3= f3(X1.N3)
(

Xy := fa(X2,X3,Ny)
Ni,...,Ny independent

1. Independence-Based Methods
2. Score-Based Methods

G* = argmax Score(Data | Graph)
Graph 437 /954



Causal Discovery from Observational Data — Assumptions

Problem (Causal Discovery from Observational Data)
Given P(Xy,...,X,), can we infer causal graph G?

Assumptions
+ = Independencies = Causal Graph = Effects of Intervention
Data

All Assumptions
» Markov Condition

» Causal Faithfulness

> Causal Sufficiency: there are no unobserved confounders of any of the
variables in the graph

> Acyclicity: there are no cycles in the graph
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The Need for Causal Sufficiency

1
1

N
LN
LN

©»  O—0 OO
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Local / Global Markov Condition — Key Assumption

Local Markov Condition

X; is independent of nondescendants ND; := V \ (Desc; UPa;), given
parents Pa;, i.e.
X; L ND; | Pa;

i.e. every information exchange with its nondescendants involves its parents.

Global Markov Condition

For all disjoint subsets of vertices X, Y and Z we have that

(X1Y|2Z)g = (XLY|Z)p
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Structural Causal Model and and Markov Conditions

Theorem
The following are equivalent:

1. Existence of a structural causal model.
Xi = fi(Pa;, U;)

2. Factorization.

n
P(Xy,....X2) = | | P(X; | Pay)
i=1

3. Local Markov condition: statistical independence of nondescendants
given parents.
X; L ND; | Pa;

4. Global Markov condition.

(XL1Y|2)g = (XLY|Z)p
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Causal Faithfulness — Key Assumption

Causal Faithfulness
P is called faithful relative to G if only those independencies hold true that
are implied by the Markov condition, i.e.

X1Y|Z2)g = (XLY|2Z2)p
Remark: Markov condition + Causal faithfulness:

(XL1Y|2Z)g & (XLY]|Z)p
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Why do we need the Faithfulness Condition? — Occam?

X\Z/Y

X

N

a

b Y
S
Z

Graph Distribution
X1y X1y
XLY|Z| XLY|Z

Graph

Distribution

(/
Exercise —

Remark: XFHEIFHEEAIRTE.

AppetiEe

XLY
XLY|Z

XL1Y
XLY|Z

> Weight Loss
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More Occam Razors?

> Causal Minimality Condition: no proper subgraph of G over V
satisfies the Markov condition with P.

A\><\:E/D A\>—<\‘:E'/D

Theorem: {RE P XT G BE/RELXME. W P XTF G BRRMNM
t, BBENE, VX;VY € Pa; : X; LY | Pa; \{Y}.

> Causal Frugality Condition: Markovian DAGs that are not having
the least number of edges should be rejected.

A\C/B E/D \\g\/
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Causal Discovery from Observational Data

Assumption: Markov condition and Faithfulness.

Inductive Causation Algorithm

1.

Given a stable distribution P on a set of variables. Start with a
complete undirected graph G on all variables.

For each pair X and Y, and each set of other variables Sxy, starting
with the empty set and increasing the size, see if (X LY | Sxy)p; if
so, by faithfulness (X L Y | Sxy)g, remove the edge between X and Y.

.Forall X—Z—-Y and X LY | Sxy, if Z ¢ Sxy, then replace X —Z -Y

by the v-structure X — Z « Y.

In the partially directed graph that results, orient as many of the
undirected edges as possible subject to two conditions: (i) any
alternative orientation would yield a new v-structure; or (ii) any
alternative orientation would yield a directed cycle.
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Could not be completed without creating a cycle or a new v-structure

X —>Y —Z ~ X —Y —>Z

X X
N N
VA ~m VA
r r
Y Y
X X
VRN N
Z w ~ Z w
NS Nt S

N

NR

B
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Example

(Eﬁ’\ |¢7J> X

¥ VOV

Hfﬁr
\Z/ \Z/ \Z/
| | |

» B3EAN: XLY

> BEA4FA XLW|Z Y1LW|Z

» BlsEHEN: Z¢Sxyy = vEE (X LY |0,Z¢0,X LY |Z)

> B 6 B BRI v-551 447954




LX1W, Y.LW

CXL1Z|Y,XLU|Y, X Y - Z
YLU|Z WL1U|Z l
U

3. Z¢SYW - V—%Flg

4. BERFTRY v-£5H
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Markov Equivalence

Definition: G and G, are Markov equivalent iff for every three
mutually disjoint subsets X,Y,Z C V,

(XLY|2Z)G, & (XLY|Z)g,

G1 and G2 are Markov equivalent iff they imply the same conditional
independences.

G1 and G+ are Markov equivalent iff they have the same skeleton
(edges without regard for direction) and the same set of v-structures
(X — Z « Y with no edge between X and Y).
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Examples

> Examplel: same skeleton, no v-structure

X —7Z —Y

X1Y|Z
Examplel: X «— 7 «— Y XLZ ZLlY
XLY

> Example2: same skeleton, same v-structure at W
w w w
/N /N /N
X Y X Y X Y
NSNS NS
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B FEHHERRRERR [JCS16; JS08]
MEZ BIERKR

> TR x F y REESRMIN I(x;y) 30, BBA

Z
X ——y X «— Yy .\
X y

> ZEEEERER
Iy |2)ZK(x |2 +K(y |2) - K(x,y | 2)

> ZHEFRMNT
I(x;y|2)Z0 & xLly]z
Remark: MNRFENEZIFTRIZT x f1 y ZIENBIVERS, BBAHE
E— R, R —xxPYET B, sENYETE=3K. BURE
HAEEEER, IR TTERITS.
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Algorithmic Model of Causality

> For every x; there exists a program u; of Turing machine T that
computes x; from its parents pa;.

x; = T(pa;, u;)

> The program u; represents the causal mechanism that generates the
effect x; from its causes pa;.

> The u; is the analog of the unobserved noise term. It randomly
chooses a mechanism.

> All u; are algorithmically independent (Markovian).

Remark: If the observations x1,...,x, are generated by the algorithmic
model of causality, then they satisfy the algorithmic Markov condition.

n
K(x1,...,xp) = ZK(xi | pa;)
i=1
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Equivalence of Algorithmic Markov Conditions[JS08|

1. Factorization ;

K(xt.oxn) £ ) K (xi | pay)

i=1
2. Local Markov condition
x\ T
I(x;;nd; | pa;) =0
3. Global Markov condition
(X 1Y |2 = I(X;Y|Z%0

Remark: Due to the symmetry K(x) + K(y | x*) ZK(y) + K(x | y*), the
Algorithmic Markov Condition only allows for identifying the Markov
equivalence class. To be able to distinguish between Markov equivalence
classes, we postulate the Algorithmic Independent Causal Mechanisms.
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https://arxiv.org/pdf/0804.3678.pdf

Postulate (Algorithmic Independent Causal Mechanisms)
A causal hypothesis G is only acceptable if

K(Px,..x,)= ZK(PXiIPa,-)

Equivalently, I(Px,[pa,; - - - i Px,|Pa,) 0.

If no such causal graph exists, we reject every possible DAG and assume
that there is a causal relation of a different type, e.g., a latent common
cause, selection bias, or a cyclic causal structure.

Theorem
If the distributions Px and Py|x are algorithmically independent, i.e.,

I(Px; Py|x) =0

Then
K(Px.y) £ K(Px) + K(Pyx) <K(Py) + K(Pxy)
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Remark

K(Px,y) < K(Px) + K(Py|x)
K(Px,y) < K(Py) + K(Px)y)

then we reject both

X —Y and X «—Y

which means

is the true structure.
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Causal Direction via Kolmogorov Complexity

MDL Principle

Given a sample of data and an effective enumeration of the appropriate
alternative theories to explain the data, the best theory is the one that
minimizes the sum of

1. the length of the description of the theory;
2. the length of the data when encoded with the help of the theory.
argmin {K (H) + K(D | H)}
HeH

’C—>E\or\C<—E\

How to infer causal direction with Kolmogorov complexity?

Given data over the joint distribution of random variables C and E.

If C causes E, then
+ /‘I?\ N
K(Pc) + K(Pg|c) <K(Pg) + K(Pc|E) R
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https://link.springer.com/chapter/10.1007/978-3-030-21810-2_1
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Type Causation and Token Causation

> General/Type Causation: smoking causes cancer

> Actual/Token Causation: the fact that Bob smoked for 30 years
caused him to get cancer

Causal explanation:
“It's true that it was pouring rain last night, and | was drunk, but
the cause of the accident was the faulty brakes in the car.”
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Actual Causation vs PN, PS

> SEPREISRIEAERER. BN D PESEEFR.

> EER PN MFEDHER PS RIKH v, (), RiERREENE B
fiE (N-fih), TARESRIFE.

> SEFREISROIE RESRTIE.
—B=12Y =1HNREE? 5—MFH 2" F1 “F=2"

@\ Y=AVB
® A=1,B=1,Y=1
_

e
/

A=1,B=1,C=0,Y=1

AVC=AV(BA-A)=AVB
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Philosophy — Process Approach to Causality?

> A causal process is a world line of an object which possesses a

conserved quantity.

> A causal interaction is an intersection of world lines which involves
exchange of a conserved quantity.
> A causes B if there is a transfer of energy or momentum from A to B.

same process
different causality

process?
counterfactual?

®

e

o &0

caused (Mean = 86.7)

P
®
®- ®
prevented (Mean = 89.7)
, ®
1
< ®—O0

didn’t cause (Mean = 18.6)
459 / 95.
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Philosophy — Probabilistic Approaches to Causality?

» Reichenbach: C causes E, iff,
1. C is earlier than E, t¢c < tg,
2. P(E|C)>P(E|-C),
3. there is no event S (earlier than or simultaneous with C) that S screens
off C from E.
~3S:P(E|CAS)=P(E|S)
Remark: Simpson paradox

> Cartwright: C causes E, iff, P(E | C A B) > P(E | =C A B) for all

background context B.°
> Dupré: “average degree of causal significance”:

> P(B)[P(E|CAB)-P(E|~CAB)
B

9Background context: all causal factors for E that excludes C and the effects of C.
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Suppes’ Genuine Cause — Probabilistic Approach

Suppes’ prima facie cause: C is a prima facie cause of E iff
1. tc <tg
2. P(C)>0
3. P(E|C)>P(E|-C)
Suppes’ first spurious cause: C, a prima facie cause of E, is a
spurious cause iff there exists S such that
1. tg<tc <tg
2. P(CAS) >0
3. P(E|CAS)=P(E|S)
4. P(E|CAS)>P(E|C)
Suppes’ second spurious cause: C, a prima facie cause of E, is a
spurious cause iff there is a partition & and for every S € &
1. ts<tc<tg
2. P(CAS)>0
3. P(E|CAS)=P(E|S)
Remark: e-spurious: |[P(E|CAS)—P(E|S)|<e

Suppes’ genuine cause: nonspurious prima facie cause.
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Remarks: 1EZRE SR

> IRRERKEERRER.

> WERREANEFEEILEARIXE.
— AERYIMRRIRER, NGRS R NRELTSIE
— SR TR, N2SEREXMEEREZAN.
— MEKGRZESHMTICHIZE "RREX" NSHFLER.
— IMIERSENEREE, FMUTATHRS SEIRIESALR
7R, XUWSRARHETEISR.
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Philosophy — Regularity Approaches to Causality?

> Mill’s Sufficient Condition: C causes E iff C — E.
> Hobbes’s Necessary Condition: C causes E iff =C — —E.

» Ramsey Test: C O— E should be believed iff, after suspending
judgment on C and E, E is believed as a result of assuming C.

Co»EeK < EeK=*C

> Wright’s NESS condition: C causes E iff C is a Necessary Element of

a Sufficient Set for E.
1. C A X is E's sufficient condition. CA X — E
2. X is not sufficient for E. X » E
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Mackie's Actual Causation — Regularity Approach

» Mackie's INUS Condition: (insufficient but necessary part of a causal
condition that is itself unnecessary but sufficient of the effect)

1. C A X is E’s sufficient but unnecessary condition.
2. C is not sufficient for E. C -» E
3. X is not sufficient for E. X » E

(CAX)VY o FE

Example: AtAERH? BAARIEED. IREXASWRE.
— Why E?
— Cy rather than Cq, since C; = argmax P(E | C)7
> Mackie's actual causation:
> C is at least an INUS condition of E
> C was present
» Components of X were present
> Every disjunct in Y not containing C as a conjunct was absent
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Lewis' Actual Causation — Regularity Approach

Definition (But-For Cause)
X =x is a but-for cause of Y =y in (M, u) iff
L. MfueX=xAY=y
2. there exist x” # x and y’ # y such that M,u e [X =x"]Y =y’

Definition (Actual Causation — Lewis 1973)

X = x is an actual cause of Y = y in (M, u) iff there exists a sequence of
variables Z1 = X,...,Z, =Y s.t. Z; = z; is a but-for cause of Z;11 = z;41
fori=1,...,n-1.

Remark: Is causation transitive?
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Neuron Diagrams

—

B

Ny

o

@

> X RUBGEHET v

—e

> X ABGEN Y RGE

—=

n
> (X)) BMESTHENE X
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vV v.v .Yy

Example — Double Prevention

O—E—BO—®

B=_|C

A=-B

Y=A
C=1,B=0,A=1Y=1

Alice A is planning to hack Yuri's Y computer.
Bob B launches a missile at Alice's city.
Carl C shoots down the missile.

Alice hacks Yuri's computer, without any knowledge that Bob and Carl
even exist.

> Nevertheless, Carl caused Yuri's computer being hacked.

» C =1 is an actual cause of Y = 1.
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1.

2

3.
>
>

Example — Transitivity?

A is a cause of B

. Bis a cause of C

A is a cause of C?

Alice EAIRIFT Bob BUEMER A.

Bob HBeht B, #ZEIEE C.

@\@
-

B=A
C=-AVB

A=1,B=1,C=1
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Sufficient Conditions for “But-For” Cause to be Transitive

Theorem (Transitivity of But-For Causation — Halpern 2016)

Suppose X = x is a but-for cause of Y =y in (M,u), andY =y is a but-for
cause of Z = z in (M, u), and the following two conditions hold,

1. for every y' € R(Y), there exists an x’ € R(X) such that
M,ue [X=xX"1Y =y

2. Y is on every causal path from X to Z.
Then X = x is a but-for cause of Z = z in (M, u).

Remark: XJtY Pearl RUERMRIFRDHM: = X X Z iIREEEFART,
e IR
Zyixr =Ly
x-oy&y oz = x>z
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Woodward's Manipulability Theory of Causation

1. X is a total cause of Y iff changing X will change Y for some values of
all other variables that aren’t descendants of X.

2. X is a derect cause of Y iff changing X will change Y when all
variables other than X and Y are fixed at some values.

3. X is a contributing cause of Y iff there is a directed path from X to Y
such that, changing X will change Y when the variables not on this
path are fixed at some values.

Type of cause | What is held fixed

total all other variables not descendants of X

direct all variables other than X and Y

contributing all variables not on one directed path from X to Y

o e [
\./ Y=AVB

X is not a total or a direct cause, but a contributing cause of Y
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Woodward's Manipulability Theory of Causation

Definition (Actual Causation — Woodward 2003)
X =x is an actual cause of Y =y in (M, u) iff
1. M,ul:X:x/\Y:y

2. there is a directed path from X to Y such that, some intervention on
X will change Y when the variables not on this path are fixed at their
actual values.

Example: A boulder falls (B) and rolls toward the hiker (R). The hiker
ducks (D) so that he does not get hit (=H).

H= R A =D H=BA-D
Problem: B =1 is a Woodward cause of H = 0 in G1 but not in Go.
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Deterministic Actual Causation — Halpern and Pearl 2005

Definition (Actual Causation — Halpern and Pearl 2005)
X =x is an actual cause of Y =y in (M, u) iff

1. Mfur X=xAY=y
2. there is a partition (Z, W) of V'\ X,Y, and some setting x” of X and w
of W such that,
21 Myjue [X=x'W=w]Y #y
22 ifzis M,u e Z = z, then for all subsets W c W and all subset Z’ c Z,
M,ue [X=x,Z"=z,W =w]Y =y

3. X is minimal, i.e. no subset of X satisfies the above conditions.

Remark: 2.1 The assignment W = w acts as a contingency against which Y
counterfactually depends upon X.
2.2 imposes a restriction on the modifications that can be made, the setting of W’
cannot interfere with the causal process X UZ UY.
3 No irrelevant conjuncts. Don’t want “dropping match and sneezing” to be a cause of
the forest fire if just “dropping match” is.
Remark: kifl, MHIEAFT TS 4 & EREHR v = argmax, P(U = u) 9,
> Mu"EX=x"AY =y"
> M,u*E[X #x*]Y #y* 472054



Deterministic Actual Causation — Halpern 2016

Definition (Actual Causation — Halpern 2016)
X =x is an actual cause of Y =y in (M, u) iff
L. MfueX=xAY=y

2. there is a set of variables W c V\ X,Y and a setting x’ of X such that,
if M\,u e W =w, then

Mue [X=x'W=w]Y £y

3. X is minimal, i.e. no subset of X satisfies the above conditions.
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Probabilistic Actual Causation — Fenton-Glynn[Fen21]

Definition (Actual Causation (Simpliciter))
X = x rather than X = x’ is an actual cause of Y =y iff
1. X =x and Y =y are the actual values of X and Y.

2. X = x rather than X = x’ is an actual cause of Y = y relative to an
appropriate model M.

Definition (Probabilistic Actual Causation (Model-Relative))

X = x rather than X = x’ is an actual cause of Y =y relative to a model M
iff there is a directed path Q from X to Y in M such that, when we hold all
variables in W := V \ Q fixed at their actual values w, for any subset

Z c O\ X,Y fixed at their actual values z,

PY=y|do(X=x,Z=z,W=w))>P¥ =y|do(X =x", W =w))
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Counterfactual NESS Causation

Definition (Counterfactual NESS Causation — Sander Beckers)

> X = x is sufficient for Y = y w.r.t. (M, u) iff for all values
z€ R(V\ (XUY)), we have
Mue|[X=x,Z=z]Y =y
> X = x directly NESS-causes Y = y w.r.t. (M, u) if there exists W = w
s.t.
1. Mfue X=xAW=wAY =y
2. {X =x,W =w} is sufficient for Y = y w.r.t. (M,u)
3. W =w is not sufficient for Y =y w.r.t. (M,u)
> X = x NESS-causes Y = y along a path p w.r.t. (M,u) if the values of
the variables in p form a chain of direct NESS causes from X = x to
Y=y
> X =x CNESS-causes Y =y w.r.t. (M,u) if
1. X = x NESS-causes Y =y along some path p w.r.t. (M,u), and
2. there exists a x” such that X = x” does not NESS-cause Y =y along any
subpath p’ of p w.rit. (Mx—y,u).
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https://arxiv.org/pdf/2310.18040

Deterministic Actual Causation — Sander Beckers

Definition (Deterministic Actual Causation — Sander Beckers)
X =x is an actual cause of Y =y in (M, u) iff

1L Mfue X=xAY =y.

2. There exist sets W, N with Y € N, and values x’, such that

2.1 for all S ¢ N with Y € S, and for all s € R(S) such that y € s, there
existsat € R(V\ (XUWUS)) so that

Mue [ X=x'W=w"T=t]S+s
2.2 forall ze R(V\ (X UWUN)),
Mue[X=x,W=w"Z=z]N=n"

3. X is minimal.
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Sander Beckers' Definition in a different way

Definition (Sufficiency)

X = x is sufficient for Y = y in M, iff, for all z€e R(V\ (X UY)), and all
u € R(U), we have that M,u e [X =x,Z = z]Y = y.

Definition (Sufficient Explanation)

A pair (X = x, N) is a sufficient explanation of Y =y, iff, Y ¢ N and
X = x is sufficient for N = n for some values n O y.

Definition

A sufficient explanation (X7 = x1, N1) dominates an explanation
(X5 = x9, N), iff, both are explanations of the same Y =y, X7 C X,
Ny C Ns.

Definition (Actual Causation)

X = x rather than X = x’ is an actual cause of Y = y in (M, u), iff, it is

part of a minimal actual sufficient explanation of Y = y, and there is no
N . . . .,

dominating sufficient explanation that includes X = x’. 477 /954


https://openreview.net/pdf?id=pJuO-5QEKa

Definition (Counterfactual Explanation)

Given (M, u), we say that X = x rather than X = x’ is a counterfactual
explanation of Y =y relative to (W = w, N), iff,

1. ((X =x,W =w),N) is an actual sufficient explanation of ¥ =y, and
2. (X =x",W =w),N) is a sufficient explanation of Y = y" with y" # y.
Remark: An actual cause X = x is a part of a minimal actual sufficient
explanation of ¥ =y for which there exist counterfactual values X = x’ that
would not have made the explanation better.
Theorem

If X = x rather than X = x’ is a counterfactual explanation of Y =y relative
to (W =w, N), then for some X Cc X, X = x rather than X = X’ is an actual
cause of Y = y.

Remark: actual causes sit in between counterfactual and sufficient
explanations: counterfactual explanations always contain actual causes.
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Difference-Making Causation — Andreas and Glinther

Definition (Difference-Making Causation — Andreas and Giinther)

C is an actual cause of E in (M, v) iff
1. M,vECAE

2. there is v/ C v such that (M,v’) is uninformative on C and E, and
M,v' e [-C]|=E

Remark: v is the variable assignment of the exogenous and endogenous
variables.

Remark: (M,v’) being uninformative on ¢ means that (M, V") satisfies
none of ¢, —p.
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https://f702a67c-891c-4009-8f00-2919191a77e8.filesusr.com/ugd/70b9dd_ed9b8088a9fa426eadef3876f42dd2f6.pdf

Actual Causation — Andreas and Gunther

Definition (Actual Causation — Andreas and Giinther)

C is an actual cause of E in (M, v) iff
1. MveCAE

2. there is v/ C v such that (M,v’) is uninformative on E, while for all

wCv,
M, v E[C]E

where M,, = (M \{fx: X ewor =X ew})Uw.

3. there is no v'’ c v\ C such that, (M, v"”) is uninformative on E and

M,V & [-C]E
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Example (Conjunctive Causes)
\. F=MAO

M=10=1F=1

_—

> M =1 is a Halpern-Pearl cause of F = 1.

> O =1 is a Halpern-Pearl cause of F = 1.

> HRIERIN. MHEMNEYE EREHR v b, M=0,0=1,F=0,
M,u* ¥ [0 #1]F #0

AL, “BESR" A= “EX" RIRERE.

Remark: [AJfZ, 1R M 1 0 #E/IVEEEREER? £ u* 5,
M=0,0=0,F=0,80%4, M=1%0=1%84+2 F =1RFREX.
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Types of redundant causation

> Overdetermination
— Multiple causes occur, any could have caused effect
> Preemption
Early Preemption Multiple causal processes begin but only one
completes and produces effect (backup causes)

Late Preemption Multiple causal processes run to completion but only
one is responsible for effect
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Example (Overdetermination)

A prisoner is shot by two soldiers.

v

v

v

@

.

Y=AVB

/® A=1,B=1Y=1

A =1 is a Halpern-Pearl cause of Y = 1.

Proof: Take W = {B}.

Mue[A=1,B=0]Y=1 M,utr[A=0,B=0]Y =0

A =1V B=1is a Halpern cause of Y = 1.

A =1 is not a Halpern cause of Y = 1.
A =1is a PAC cause of Y = 1.
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Example (Bogus Prevention — (Counter-)Example?)

The assassin refrains from poisoning the potential victim's coffee A = 0.
But the bodyguard puts an antidote into the coffee anyway B = 1.

(&)
\ Y=-AVB
/® A=0B=1Y=1

» B =1 is a Halpern-Pearl cause of Y = 1.
Proof: Take W = {A}.

Mue[B=1,A=1Y=1 Mur[B=0,A=1]Y =0

> B =1is not a Halpern cause of Y = 1.
A =0V B=1is a Halpern cause of Y = 1.
B =1is a PAC cause of Y = 1.

\ A {
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Example (Early Preemption)

Alice and Bob are aiming rocks at a window. Bob will throw his rock if
Alice doesn't throw hers.

B=-A

l\® Y=AVB

7 A=1,B=0Y =1

> A =1is not a Lewis cause of Y = 1 in the above model, but is a Lewis
cause in the following model. What is the “right” model?

@<:7'® F: Alice’s rock flies toward the window.

> A =1is a Halpern cause of Y = 1.
Proof: Take W = {B}.

M,ue[A=0,B=0]Y =0

» B =0 is not an actual cause of ¥ = 1. 485/ 954



Example

Example

Gang leader Alice orders Bob to join her in shooting Yuri.

®_ =2

l/@ Y=AVB
A=1,B=1Y=1
) 1)

A =1 is a Halpern cause of Y = 1.
A=1isaPACcause of Y = 1.

B =1 is not a Halpern cause of Y = 1.
B =1is a PAC cause of Y = 1.

vV v.v .Yy
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Example — Early Preemption

Examplel Alice poisons the victim's coffee. Bob puts an antidote into
the coffee. Bob would not have put antidote into the coffee if
Alice had not poisoned the coffee.

Example2 Alice puts an antidote into the victim's coffee. Bob poisons
the coffee. Bob would not have poisoned the coffee if Alice
had not administered the antidote.

@ B =
l @ Y=-AVB Y=Av-B

7 A=1B=1Y=1 A=1,B=1Y=1

A =1 is not an actual cause of Y =1 in examplel.

B =1 is an actual cause of Y =1 in examplel.

A =1 is a Halpern / Fenton-Glynn cause of Y =1 in example2.
A =1 is not a PAC cause of Y =1 in example2.

B =1 is not an actual cause of Y =1 in example2.

vVvyVvyVvyy

487 /954



Example (Early Preemption)

Alice and Bob are aiming rocks at a window. Bob will probably throw his
rock if Alice doesn't throw hers.

PB=1]A=0)=09
P(B=1]A=1)=0.1
@) PY=1|A=1,B=1) =095

\® PY=1|A=1,B=0)=05

/ PY=1|A=0,B=1)=0.9
P(Y=1|A=0,B=0)=0.01

A=1,B=0,Y=1

» A =1is an actual cause of Y = 1.
Proof: Take Q = {A,Y}, W = {B}.
PY=1|do(A=1,B=0))=0.5>P(Y =1|do(A=0,B=0)) =0.01
> B =1 is an actual cause of Y =1 relative to model M.
Proof: Take Q = {B,Y}, W = {A}.
PY=1|do(B=1,A=1))=095>P(Y =1|do(B=0,A=1))=0.5
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Example (Early Preemption)

Alice and Bob are aiming rocks at a window. Bob will probably throw his
rock if Alice doesn't throw hers.

P(B=1|A=0)=09
P(B=1|A=1)=0.1
P(AH=1|A=1)=05

@ ' P(AH=1|A=0)=0.01
\ P(BH=1|B=1)=0.9

@ P(BH=1|B=0)=0.01
/ P(Y=1|AH =1,BH = 1) = 0.998
_» PY=1|AH =1,BH =0) =0.95
PY=1|AH=0,BH =1) =0.95
P(Y=1|AH =0,BH =0) =0.01
A=1,AH=1,B=0,BH=0,Y =1
> B =1 is not an actual cause of Y =1 relative to model M.

Proof: Take Q = {B,BH,Y}, W = {A, AH}.

P(Y=1|do(B=1,BH=0,A=1,AH =1)) =0.95<0.95048 = P(Y = 1 | do(B = 0,A = 1, AH = 1))
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Example (Early Preemption)

Alice and Bob are aiming rocks at a window. Bob will probably throw his
rock if Alice misses.

P(B=1|AH=0) =09
P(B=1|AH=1)=0.1
P(AH=1|A=1)=05

@ ' P(AH=1|A=0)=0.01
\ P(BH=1|B=1)=0.9

@ P(BH=1|B=0)=0.01
/ P(Y=1|AH =1,BH = 1) = 0.998
_» PY=1|AH =1,BH =0) =0.95
PY=1|AH=0,BH =1) =0.95
P(Y=1|AH =0,BH =0) =0.01
A=1,AH=1,B=0,BH=0,Y =1
> B =1 is not an actual cause of Y =1 relative to model M.

Proof: Take Q = {B,BH,Y}, W = {A, AH}.

P(Y=1|do(B=1,BH=0,A=1,AH =1)) =0.95<0.95048 = P(Y = 1 | do(B = 0,A = 1, AH = 1))
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Example (Late Preemption)

Alice and Bob throw rocks at a window simultaneously. Alice's throw hits
the window and Bob’s misses.

P(AH=1|A=1)=05
P(AH=1|A=0)=0.01
P(BH=1|B=1)=0.9

\ P(BH=1|B=0)=0.01

@ P(Y=1|AH =1,BH =1) = 0.998

/ P(Y=1|AH=1,BH=0)=0.95
_» PY=1|AH=0,BH=1)=0.95
P(Y=1|AH =0,BH =0) = 0.01

A=1,AH=1,B=1,BH=0,Y =1

> B =1 is not an actual cause of Y = 1.
Proof: Take Q = {B,BH,Y}, W = {A, AH}.

P(Y=1|do(B=1,BH=0,A=1,AH =1)) = 0.95<0.95048 = P(Y = 1 | do(B = 0,A = 1, AH = 1))
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Example (Late Preemption)

Alice and Bob throw rocks at a window simultaneously. Alice's throw hits
the window, and Bob’s misses because of Alice’s hit.

PAH=1]A=1)=05
P(AH=1]A=0)=0.01

@ P(BH=1|B=1,AH=0)=0.9
\ P(BH=1|B=0,AH =0) = 0.01

@ PBH=1|AH=1)=0
/’ P(Y=1|AH=1,BH =0) =0.95
_» PY=1|AH=0,BH=1)=0.95
P(Y=1|AH =0,BH =0) = 0.01

A=1,AH=1,B=1,BH=0,Y =1

> B =1 is not an actual cause of Y = 1.
Proof: Take Q = {B,BH,Y}, W = {A, AH}.

P(Y=1|do(B=1,BH=0,A=1,AH=1))=0.95=P(Y =1|do(B=0,A4 =1,AH = 1))
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Example (Simple Switch)

/@\ o
®\ /® =1 AY—ZIABV—BO Y=1
X=1,A=1,B=0,Y =

> X =1 is not an Andreas-Giinther DM-cause of Y = 1.
Proof: The model (M,v’) is only uninformative on X and Y for v/ = 0.

A=X

B=-X

Y=AVB
0

But M,0¢ [X =0]Y # 1.
> X =1 is a Halpern cause of Y = 1.
> X =1is not a PAC cause of Y = 1.
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Remark

PN /@\
@\ e
o

» EE X =1 A2 Y =1 NFEH, GEN 2"

> [Altt, FIKTSEPRESRAT, ARER % ELiRAIERITTE
X=1-5A=1->Y =1, FEEEREILNKR
X=0—-B=1->Y=1
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Disscussion

Example (Frankfurt-Case)

@ BM = —AP

/ \ AS = BM
Y = APV AS

\./ AP=1,BM=0,AS=0,Y = 1

> Alice FERFET Yuri. & Alice A&, Bob £ Alice 83 Yuri.
» AP =1 is not an Andreas-Glinther DM-cause of Y = 1.
> AP =1 is a Halpern cause of Y = 1.
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Example (Realistic Switch)

7 A=UsAX
B=UgAN—-X
@ @ YZABVB

/ U =iUp = LX=1A-LB=07=1

The model (M,v’) is uninformative on Y for v/ = {Us = 1}.

A=UsNX

B=UpA—-X

Y=AVB
Us=1

But M,v E[X =1]Y = 1.
However, consider (M, v"") that is uninformative on Y for v/’ = {Ug = 1}.
Then M,v"” £ [X =0]Y = 1.

Therefore, X = 1 is not an Andreas-Glinther actual cause of Y = 1.
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Example (Hall's “short circuit")

A hiker is on a hike (A). A boulder falls (B) and rolls toward the hiker (R).
The hiker ducks (D) so that he does not get hit (=H) and continues the

hike (Y).

@ ® =
/ D =B
H=RA-D
Y=A
R

e / A=1,B=1,
» A =1 is an actual cause of Y = 1.

» B=1isaPACcauseof D=1,and D =1 is a PAC cause of Y = 1.
» B =1 is a Halpern / Fenton-Glynn cause of ¥ = 1.

» B=1is not a PAC cause of Y = 1.
Remark: PAC causation is not transitive.
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Example (Short Circuit)
Alice 7£ Yuri ROIHEERAR T AEZS A. Bob SEERI T B0 B, {BANR Alice
THBRZSHIE Bob BAR TSR, SLHFIRZSHH C, Yuri &5 Y.

\ B=A
C=AAB

D v=Ba-C

// A=1,B=1C=1Y=0

» A =1is a Halpern / Fenton-Glynn cause of ¥ = 0.

> A =1 is not a Beckers cause of Y = 0.
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Example (Early Preemption)

A desert traveler Yuri has two enemies, Alice and Bob. Bob poisons Yuri's
canteen. Alice, unaware of Bob’s action, shoots and empties the canteen.
Whose action is the actual cause of Yuri's death?

C=A

D=BA-A

Y=CvD
A=1,B=1,C=1,D=0,Y=1

» A=1is a PAC cause of Y = 1.
> B =1 is not an Andreas-Giinther cause of Y = 1.
» B=1is not a PAC cause of Y = 1.
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Early Preemption vs Short Circuit

C=A C=A
D=BA-A D=BA-A
Y=CvVD = Y=CvD
A=1,B=1,C=1,D=0,Y =1 A=1B=1,C=1,D=0,Y =1

> Aﬁff@ =1 E‘E Y%E =1 E"J)E
> Agr = 1 2 Yare = 1 HIRE?

500 /954




Probabilistic Actual Causation PAC — ToDo

Definition (Probabilistic Actual Causation)

X = x rather than X = x’ is an actual cause of Y =y in (M, u) iff

1.
2.

M,ueX=xAY=y

there is some set W off some directed path from X to Y fixed at their

actual values w such that:

2.1 W =w does not determine Y =y in M\p,: P(Y =y |W=w) <1

2.2 for any subset Z of some directed path from X to Y fixed at their actual
values z, we have

P(Yx=xz=; =y | W=w)>P¥x=p =y | W=w)

there is no set W off some directed path from X to Y fixed at their

actual values w such that:

3.1 W =w does not determine Y =y in M\p: P(Y =y |W=w) <1

3.2 for any subset Z of some directed path from X to Y fixed at their actual
values z, we have

P(YX:x’,Z:z =Yy | W:W) >P(YX:X =Yy | W:W)
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Backtracking Actual Causation BAC — ToDo

» There can be multiple ways of setting U* = u* that satisfy the
structural equations and agree with the counterfactual antecedent.
> We assume Pg(U* = u* | U = u) > 0 for any u*.
Definition (Backtracking Actual Causation)
X = x rather than X = x’ is an actual cause of Y =y in (M, u) iff
1L MfueX=xAY=y

2. there is a directed path Q from X to Y, and some set W c V' \ Q fixed
at their actual values w such that in M\ fx-:

2.1 W* =w does not backtracking determine Y* =y,
Pp(Y'=y | W' =w)<1
2.2 for any subset Z c Q \ X,Y fixed at their actual values z, we have
Peg(Y'=y | X" =x,Z" =2, W' =w)>Pg(Y"'=y | X ' =x"W=w)

3. thereisno...... x' oo x
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Discussion

Examplel Alice and Bob are aiming rocks at a window. Bob will throw
his rock if Alice doesn't throw hers.

Example2 A boulder rolls toward a hiker (A). The hiker ducks (B) so
that he survives (Y).

A B:—|A B=A
l\y Y=AVB Y = —~AVB
B/' A=1,B=0,Y =1 A=1,B=1Y =1

» A =1is not a PAC cause of Y =1 in both Examples.
> Remark: If we add exogenous variables for A and B,
Uy — A

N
7

Up — B
Then A =1 is a PAC cause of Y =1 in Examplel, but it is not a PAC
cause of Y =1 in Example2. 503 /954
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IIARFZ=IE: [F (3EbR) BAREZR?

Examplel Alice ] Bob HERIMIFIE. NER Alice A3, Bob WHHTF.

B=-A
Y=AVB

A=1,B=0,Y =1

B=-A
Y=AVB

A=1,B=0,Y=1
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1. Yuri B 2 EJ55. IRER Yuri B9 Alice Efk?j:_AEEET Yuri BYE3
T Bob. Alice SRR, $67E Bob ZRBI@T Yuri 1 25T, Bob 75T
BME Yuri 2 35T, BEFH Alice BRETE, REUEER.

2. BINES Alice JIRARRFE Yuri B, A Bob MEREER Yuri

< ............. @ob EE) E. nA HD

A FEEWRE > [BobFE| 4, Al ‘
Yuri YR R P

A=B
C=A
D=BA-C B (WF) B (RE) FRE%E?
Y=C+2(1-C)(1-D)

A=1,B=1,C=1,D=0,Y =1 505 /954



Discussion: Overdetermination vs Bogus Prevention
IAMTEIRRL: [ (SEFR) EARRIE?

Examplel A prisoner is shot by two soldiers A = B = 1.

(Counter-)Example2 The assassin refrains from poisoning the potential
victim's coffee A = 1. But the bodyguard puts an antidote
into the coffee anyway B = 1.

Y=AVB Y=AVB

1R

0 A=1,B=1Y=1 A=1,B=1Y=1

> B =1 is a Halpern-Pearl actual cause of Y =1 in both Examples.

> B =1 is not a Halpern actual cause of Y =1 in both Examples.
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Disscussion: W HY “§HTERIN "

RIBIBEAIAR, W B9IEIRT SeR N
> TE Overdetermination FIFIFEE, A, B EXITRAY, (EARLRY "RER
A", IR E e
> fE Bogus Prevention B9 FE, “IHE" #ER T RIZIZ TSRIBHE
> 7E Overlapping B9fIFEE, “IHE" $#BER) T EERET s HAIEH
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Example — Overlapping

> Alice casts a spell with a 0.5 chance of
//,v turning the King and Yuri into frogs;

T > Bob casts a spell with an independent
'\\Ul/)\ - @ 0.5 chance of turning the Queen and
) h =D Yuri into frogs.
=0, R=ANTh
ey Q=BAUs

s Y=(AAU)V(BAU)
Ul P(U=1)=05
\\\ P(Uy=1)=05
\‘\ P(K=1]A=1)=P(Y=1|A=1,B=0)=P(U)
P(Q=1|B=1)=P(Y=1|B=1,A=0)=P(Us)
A=1,B=1,K=1,0=0,Y =1
» B=11isnot a PAC cause of Y = 1.
Proof:

P(Yp=1=1]0Q0=0) = P(Yp=0=1]0Q=0)
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Attributing Responsibility

» Judging actual cause.

> How do we assign causality across multiple potential causes?

> How to assign blame or credit?

> How do we factor in intentions, beliefs, foresight etc?

Halpern’s Definition:

> The degree of responsibility Dr((M,u),X =x,Y =y) =0 if X=xis
not part of a cause of Y = y. Dr((M,u),X =x,Y =y) = E if there
exists a cause X = x of Y = y and a witness (W, w,x’) being a cause
of Y =y in (M, u) such that: X = x is a conjunct of X = x, and
|X| + |W| =k, and k is minimal.

> The degree of blame of X = x for Y = y relative to epistemic state
(K, P) is

Db(K,P,X =x,Y =y):= > Dr((M,u),X =x,¥ = y)P((M,u))
(M,u)eX

Remark: =FIARPRZE: 1TENZBISEFRESARRE; 1TEIZBIROIZEHATIA
TR TSR Z ERNARIRT.
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Responsibility: a quantitative measure of causality
Voting Example

Alice 5 Bob FiE. 1R#E Halpern BIR{TFHIEINE,
> 51:49 . Each voter for Alice is 1-responsible for her win.
> 90 :10 . Each voter for Alice is 1/40-responsible for her win.
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BEES FHIEREFIE — ToDo

Av—Us - Uy — A"
' ~ - "

B+~—Ug -~ Uy —> B

W

> Alice FEMBEE T —R T, LIABIAFRSTHE, FBELK. Bob
LAAR=I6, 838 Yuri FF7—48. Yuri JEL.
> tRIE Halpern, Alice BIZRIER 5. ITRNUKFHARIASHISERE.
> EA Alice LAJS (Fitk}) BIATRSFHE, FLA
P(Up=1|Us=1,Ug=1) =cp <1, F{IaY,
P(Uy=1|Us=1Up=1)=ca< 1. LA
Pp(Yi_ =1|A=1,B=1)-Pp(Yi._,=1|A=1,B=1)=cp
Pg(Yp =1|A=1,B=1)-Pp(Yj_o=1|A=1,B=1)=ca
> Alice FNSKRERERNIZZ c; Bob HITESTIENIZRE ca-
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Causal Machine Learning

Causal Inference
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Figure: Chaochao Lu. The Agnostic Hypothesis: A Unifying View of Machine
Learning

Out-of-Distribution jZ{t, ~ BEIMERIATMH ~ FFIAZTM ~ ERIE?
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https://causallu.com/2020/10/24/the-agnostic-hypothesis-a-unifying-view-of-machine-learning/
https://causallu.com/2020/10/24/the-agnostic-hypothesis-a-unifying-view-of-machine-learning/

E&R vs REERZS] Causal and Anti-Causal Learning

P(Effect | Cause) L P(Cause)

Causal Learning Anti-Causal Learning

Given samples (cause, effect) | Given samples (effect, cause)
Learn: Effect = f(Cause) Learn: Cause = f(Effect)

P(Effect | Cause) P(Cause | Effect)
e.g.. BEREHETTN. e.g.. FEHFIRG.

> FREFIH, WEEZEEA, JMTRIIFS:
P(Effect | Cause)
FREMHIER. (FTnESEE P(X) SHH P(Y | X) H37)
> WEIEZRER, JYTRHIFS:
P(Cause | Effect)
AREER. (TWEEE P(Y) BE3XT P(X | V) BIER)
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X

p(x)

Y = f(X)
Px L f
Py HIBES /' RIRIZRIEX
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Are there hidden variables affecting both X and Y7

Nature variables ixels label
e var Nature causal P human 0
mechanisms cognition o
C% AVAVAVAVAV | AVAVAVAVAVAV e
- causal R - BV 0
anticausal causal
> causal Nature variables

—> anticausal
—> anticausal+causal
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https://arxiv.org/abs/2102.12353

MEEFZINTAFE Causality?

REFINDTINZHRENTIRERE

Figure: Image classifiers are prone to spurious relationships when samples are
from a distribution with intervention on the background.

P(Cow | Image) # P(Cow | Image, do(Background = beach))

, Background

e

// Head, Tail...
/

[o¥g PNS?

14

Goal: Learn classifier invariant to spurious associations.
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[ Z5E (BEEREIE + TF0) EXITFEAFRIER

T —— WS - E —— %
EA — B8 - BR — BR

argmind(b,b’) subject to f(c,b’) =1
b/

argmax Pg(b’ | ¢,l’,c,b,1,i)
b/

> RE|LERE = RARIREIRRSEL
> 5(9‘}77,1‘3?2!: =P =L v IR
TIHIEFS): WIS R BT /\uJSU}FLﬁZK, PRI EEHTIERRELLA
Iié.lB HSRAIRERIEIRN (BEEED) 517 954



vV v v Yy

Invariant Feature Learning

----X
_-" AN
- N
~

CRREATU

______ \

EET U AIRESEAE C B R B ZERIMEX.

RE C {I5R B HEEREREEE X, Bi5E ¥ (XERS C RE.
P(y | c) REBSR do(b) R P(y | ¢,do(b)) = P(y | ¢).

Invariant Feature Learning (IFL) ETEIRBMFHE C, BD

c=0(x) st. Y~P(y|c)
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_ ~

I\\\

/' B%ma ' -
@g% \\@gs-

N

EH% vl @

DRERSLAENER

— YEFRHTIE

- FEGE

519 /954



The Platonic Representation Hypothesis

Z

a blue cone.

> <{ A red sphere next to

| frene

|

Figure: Neural networks, trained with different objectives on different data and
modalities, are converging to a shared statistical model of reality in their
representation spaces.

520/ 954


https://arxiv.org/abs/2405.07987

7
\Deception Blame Gratitude
AN

Manipulation )/

Generalisation

Harm
Control
incentive

Goal-
directedness

——

Response

Value of incentive
control /—\
Fairness

Response

Counterfactuals

Causality
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Causal Influence Diagram CID (Decision Network)

- BB MRS RN T TS AR 5 AR TR
’EWI?ETA@M&%WWmmF:5mﬁ%ﬁﬁ%§§

REE (CID) BiENYRIY T ERKRAIRINE]

ESBNE (CID) BRFINT s D | A5 R R
ET
SRS B ESIEN Pap > D
AP IR RS AR S
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https://causalincentives.com/

chance node
decision node

utility node

causal link

information link

Response Incentive

Control Incentive
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5L

Example: THEf-RME

e

G -G
B | 40 -1
-B | - 0
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Example: Decision Network for the Diagnosis Scenario

Symptoms

Disease

Outcome
Test Result

Test

\

Treatment
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Dynamic Decision Network — Example

Next
At At+1
i NextPiece,
CurrentPiece; CurrentPieceq |
Filled, Filled,
Rt Rt+1
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Structural Causal Influence Model SCIM

Definition (Structural Causal Influence Model SCIM)
A structural causal influence model is (M, P), where M = (U,V, F), and

1. U={Uy,...,Upy} is a set of exogenous variables.

2. V=AVy,...,V,} is a set of endogenous variables, which are partitioned
into structural nodes X, decision nodes D and utility nodes R.
3. F={f1,..., fa} is a set of deterministic structural equations,

Vi = fi(Pa;, U;), that specify how each non-decision endogenous
variable depends on its parents and its associated exogenous variable.

4. P is a distribution over U.

‘P(U) and F induce a distribution P(V) over observable variables.
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In single-decision SCIMs, the decision-making task is to maximize
expected utility by selecting a decision node D based on the
observations Pap.

More formally, the task is to select a structural equation for D in the
form of a policy n : Pap UUp — D.

The exogenous variable Up provides randomness to allow the policy to
be a stochastic function of its endogenous parents Pap.

The specification of a policy & turns a SCIM (U, V, F, P) into an SCM
(U,V,FU{n}, P).
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Example: Decision Network for the Fire Alarm Problem

Tampering @

A

<>

Leaving

Check
Smoke

eeSmoke

Report

A

\

Call
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Mechanised Causal Graph[Ken+22]

Definition (Mechanised Causal Bayesian Network)

A mechanised causal Bayesian network is a causal Bayesian network over a
set of variables which is partitioned into object-level variables V and
mechanism-level variables V. Each object-level variable V € V has a single
mechanism parent V € V, such that the value of V sets the probability
distribution P(V | Pay), where Pay is the set of object-level parents of V.

Remark: We call the mechanism of a decision variable a decision rule
variable.

Definition (Structural Mechanism Intervention)

A structural mechanism intervention on a variable V is an intervention v on
its mechanism variable V such that V is conditionally independent of its
object-level parents.

P(V | Pay,do(V =7)) = P(V | do(V = 7))
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Example: Agency violates Independent Causal Mechanism

;Sprinker Mechanism —» Springker

y
: Grass Mechanism ———+C WetGrass

TKHLE: FEESRIKERES.

ERILE: IEEEXIAEKERIIRAL.

MERVHRITIR, HERERITKE EEFKEED.
MERINFIZFREIRIEE, RS EAWSIR TR sES R
YT RES.

vV v vy

Counterfactual adaptation: YIRHFBARERNERYEISZE, A
Agent 1 RENAREIRITFRS.
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Example: Agency violates Independent Causal Mechanism

> RRERIERRERAISITI

> Agent BT ARBIRSAERT.

> Agent SARIEAIRVIT AR AL RIARSEZRZE CHIZRE.
> Pty BEin
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KT Agents FY—LE[E]RT

. BILAEMBLEZEEIN Agent? EEEHEEER?

EABIEE Agent? HARHRXIESHEEILUBIIE Agency?
Agentcy BESENEZRKIRAIIS?

BATBERE Agency?

I AREZEERY Agent BIRE{CIEREK?

BEAIRE Agent? EEE Agency?

BT Agent BI1T/97

A[E Agent Z[BIRJBEBTARER?

BABEIE Agent, FHEZ S, N, BE?
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https://arxiv.org/abs/2502.04403

Agent IU\AZ_#/ \% Agency?

Perception

Optimality/ Coherence
regret

JE— ) Degrees of
- Sprinkler freedom
’ pollcy
....... . Mechanism node/
s regime indicator
Soeed of adantati Influence
peed of adaptation
:] Object-level node
Other:
fobuet S e  Separation
obustness Grass e  Self-preservation
mechanlsm

Retargetabmty

Dimensions of Agency

degrees of freedom, influence, adaptation (speed, effectiveness, robustness,
retargetability), coherence, and self-preservation...
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INGIEN T vs BiRSERINHIERN %

> RKESTS, AN TENESTIENE S, SABTEN, Mamd
ERER, EIBCERMOIERIGHL, (e RS, LU EFE.

> BEZEMRELHEE SHEEIEEX.

> MRASTRAECREHES, SRS,

> AL T ENIMERIRES, (EAEE BRSRRHEEN .

X
: RN S
/

=) 1T

L: (
/l SRR
X ™ < N :
/ SeEBRiALL CRmRET

B A - U

I

..... ’ 535 /954



Btx vs Zmh

Objectives vs Incentives

> B#x (Objective) 2 Agent RZE(MAINISR, HIANIRREEIZH
> B (Incentive) 2 Agent AT A BEIRLRIHEISETE.
Remark: EEIAKER T Bix, KBTS
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EIERE4RD Causal Incentives

> Value of Information: Agent IEfIARZ BITEEFIEHAEBER?

» Response Incentives: FLEIREITVES(FE Agent BEEITH?
— XFRELNF, BAIHBE Agent XNRELEFAEZE NN,
Erantdal. k. &8, FRE......

> Value of Control: 1RATLARYE, Agent BEEFHIHA?

> Instrumental Control Incentives: {42 Agent BEAB SN BEi=Hl
9?

Value of Information & Value of Control
> IHEHREESHEIER, BERNE BFERAMIEEST.
> DREIKRERE— RSB IERINE, BIEEERNE.
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https://arxiv.org/abs/2001.07118

Russell’s Principles for Beneficial Machine

> Machines are intelligent to the extent that their actions can be
expected to achieve their objectives.

> Machines are beneficial to the extent that their actions can be
expected to achieve our objectives

/\*ﬁﬁ RN

/*—»——‘\

BESA Agent 2 goal-directed, 'BATRHR “AZBNMAZRFER"?

BEIFERMF>]? Cooperative Inverse Reinforcement Learning
ETASKIFRGECFS? RLHF
A BYEE? Scalable oversight

vVvyVvyy
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Ay RS

Human level

Supervisor Student Supervisor Student Supervisor Student
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AaIRbIE R A AOIEIRR?

*

Agent ZE

N R
N
HEENE

> A1 Agent IBII—MNEEE, FENEEXT Agent FUEIRITOH
1TRATRERETHIREIE, M0 Agent NIEZTIIB KA.

> {BE Agent WINEE B TEMEFIRR. Agent SIBEIMCEEE
BE, NERBEMAERT.

> CDT 2ENS:T = LT, FDT 2EETH = E#E# Tk,

> ENETREMRMHE post-policy FF; EHHEI TR LEMLHE
pre-policy F&.

> X3F pre-policy FHli, Agent RISRESHI LA BN M TEES.
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: Agent [RIEHIH
............ et

Agent FRig —> Agent BI{E

Agent Ri%

S . BHHRRIR

B A

optimise here? or here? I EE RIS

...........................
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54 { Agent [

AEw

hazE=28

...................

Agent FR& —> Agent TH’E

...................

Agent =g

] PrtEiR R

JRLS _,: ..... H'_ ..... . %;E =
i Ll

here

Post-policy intervention: the agent do not know the advisor's policy has been modified to always approve. — CDT
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...................

Agent R& —> Agent TH’E

...................

AKmEF

BRI

.........................

»{_Agent =g

PasEiRM I

here

2‘
=y

WEEE

> |t can shape the agent to cooperate.

...........................

Pre-policy intervention: the agent do know the advisor’s policy has been modified to always approve. — FDT 543 /954



Adaptation

Distributional shifts = Pre-policy interventions

> Some data:

> Domain adaptation
> Few-shot learning

» No data:

> Domain generalisation
» Zero-shot learning
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lterated Amplification

1. SERERYIER 0 DR N—FRIIRRAIA O
2. FeREBRERRENESR A BEH A
3. A AF 0 NIEFRESR A RET
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https://arxiv.org/pdf/1810.08575

Comprehensive Al Services

> BIAREDELES Agent HIMEREIR
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Dabate

> XHFAEE O, AEIRY Agent BHTHAL.
> RIGEBFTEH.
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Causality in Games[Ham-+23|

1. Prediction
1.1 Given that the worker went to university, what is their wellbeing?
1.2 Given that the worker always decides to go to university, what is their
wellbeing?
2. Intervention
2.1 Given that the worker is forced to go to university, what is their
wellbeing?
2.2 Given that the worker goes to university iff they are selected via a
lottery system, what is their wellbeing?
3. Counterfactual
3.1 Given that the worker didn’t go to university, what would be their
wellbeing if they had?
3.2 Given that the worker never decides to go to university, what would be
their wellbeing if they always decided to go to university?

Prediction Intervention Counterfactual

Post-policy | P"(U|A=a) P™(U|do(A=a)) P"(Upze | A=a)
Pre-policy | P(U|TT=n) PU|do(Il=n)) P(Up=p |M=mn)
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HEREENR 2

> EEFERAEARAARREER?

> EF(RRECERAR?

> SR F I BT B H RS ERAAZ .

> IXERH RS R REY REF!

> EXH Instrumental Control Incentive S5{RIEFIFLHFTBER
ZINERZEENAE.

PRI
DYalwEF

AT
FRES

WRMAY
R

HERE
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FAFRY WY
ialwer / %Fﬁl}

HEERE

AN
ey

> NREEREARRANREER, MERNREERE?

> IR, EE T REYRFAEBE Instrumental Control Incentlve
» {H Graphical Incentive Analysis RETE "JERFHEITR" 128 “A
3" BB
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o8 ~

L

> BEBAEE Hy — U? XIKTFRE M 59155
— INFREE v BEEETI ERIBF IR REERREH, 3
A& 1 55[ fo — l]

> LAY, HEFEIARLL “goal-directed” BIFTTUIBNER/NN B RET
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(EHBESFEERZL — Impact Measure

FBFRY
ialwer

e
ERES

Ugaes + A Distance (# MR AR, EiEmRET) 552,954

WM
FP{miF




B REFEME Interpretability

P2 ER S e

PotEiRA R

| RRRE R

> ERERUNEE, RRERGE Agent BITNF, MMM

> REEITEREMSIEE,. NE, BIENSHEREER, Brlbls
Hris E A ESERAYT .

> AT, AJLAREINESHAINE S ZEILE Agent FIRERTIR.

553 /054



LRI EE
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TRRE R
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BRSNS B

Question: JRESRLNG?
Answer: £SXHk

State: BREE K

FU=3FE S

BRLAAEELL Agent FEESCHHER
BIRUTASRYERR.

vV v v v Yy

> 1f Reward AZESLHFKES
AIRZIM.

> EREBLHRE FEAZM
SRR

> EXAS Twin Network BBt
SHUERR.

v » Remark: & State X ABR
47, MUETLABHIRA
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Functional Decision Theory[MEB23; YS18|

> Assume you possess an algorithm of your decision mechanisms (the
predictor can also run your algorithm). You select your decision
mechanism that produces the best outcome.

7" =argmaxE[U | do(IT = x)]
Example (Newcomb Problem)
E
7

(
|

Figure: EDT vs CDT vs FDT
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ARRMHBJER — machine simulated consciousness

> BE: #EH BEEE—TRE.
» B NER, olseE—B A, BalseAEgE.
> (REfLUGERERZESR, LI EZE.
> ﬁIﬁAJEMlJ\/‘:\'; 8 HeEREN—ESL MRTHRRNEE,

MELEETE.
> iZEMEEaﬁ HIT 3.

your choice

predicted choice

both black
black 0 100
both 0.1 100.1
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i / SUJEN Dominance Principle?

> MNREBEEHEL RER
#H=Z.

> IREBERIR REEZE 0 7T, BMEEE—F. RPE=E.
> BEEERRRE IR
> WPEE.

u
Eﬂb

5—8h, BMEEE—BAE—T A

(4] [-A]

AV-A B B
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Evidential Decision Theory & Causal Decision Theory

> Evidential Expected Utility

Vevidential(A = @) = )" P(e | A = a)u(a, e)
e

> Causal Expected Utility

Vcausal(A =a)= Z P(e | dO(A = a))u(a’ 6)

P(e|a) = ZP(@ | s,a)P(s | a)

P(e | do(a)) = ) P(e | 5,a)P(s)
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Evidential Expected Utility vs Causal Expected Utility

P(predict-both | both) =1 P(predict-both | do(both)) = P(predict-both)
P(predict-black | black) =1 P(predict-black | do(black)) = P(predict-black)
P(predict-black | both) =0  P(predict-black | do(both)) = P(predict-black)
P(predict-both | black) =0  P(predict-both | do(black)) = P(predict-both)

Vevidential (A = both) = »" P(e | A = both)u(e) = 0.1
Vvidential (A = black) = Z P(e | A = black)u(e) = 100
Veausal(A = both) = »" P(e | do(A = both))u(e)

= P(predict-both)0.1 + P(predict-black)100.1
Veausal (A = black) = )" P(e | do(A = black))u(e)

= P(predict-both)0 + P(predict-black)100
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oo freedom?

(e EDT/CDT 5

V(ha) = ) u(hi)P(ase, | he)

= Z u(hy.)P(es | hpas)P(a; | hey) (Evidential /Causal)
= Z u(hi)P(ar | h<ie)Ples | hey) (Freedom)
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Newcomb Problem

> You stand before two boxes. One is transparent and contains one
thousand dollars; the other is opaque and contains either one million
or nothing.

> Your choice is between taking two boxes and taking just the opaque
box.

> A reliable predictor “Oracle” has put one million in the opaque box iff
she predicted you would one-box.

II I1

] |
do(a)

' N

» EDT: one-box
» CDT: two-box
> FDT: one-box 562 /954




Digression

> To evaluate a pre-policy, we first allow other agents to learn their best
response policies to all possible pre-policies.
P(Y =y|do(m)) = Y. P(Y =y | mi, 7)) P(n_; | do(xy))

II;(m_;)(0) = (arg;r_laxZP(y | do(I1; = m))ui(y)) (m_i)(0)
t ¥

> {40 Newcomb [AJRREEAY Oracle ZBRA T E5ENR?
> Libet L8 A JRYARSRATHARRITUUE.
> SIREM vs FIEEME 563 /954



EfuT

> F: R84z F18?

> C ANME, EBRFRETETERE. do(A = procreate)

> F: IBERRMEEE, AR, NRLBHEERE, FAIHE
??EEI{JUL%? do(IT = ﬂnot—procreate)

> C:{BFLRE, KIISEFE T, P(e | do(e), O = existing)

-

HFather : HSon )

.....

ProcreateFather .................................. »| Procreateson

» CDT: not procreate
> FDT: procreate Updateful-FDT: not procreate
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EDT vs CDT vs FDT (Updateless / Updateful)

Mgpr(0) = argmax E[U | A = a,0 = o]
a
Mepr(0) = argmax E[U | do(A = a),0 = o]
a
[lgpr = argmax E [U | do(Igpr = ﬂ)]
T

Update _
[ =argmax E [U
Ve

do(HIFJg?ate = 7r), 0= 0]

.

[ o
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Remarks: Updateful-FDT &IEN5?

[T =argmaxE[U | do(Il = 7),0 = 0]
Il(o) = (argmaXE [U]|do(Il =n),0 = 0]) (0)

~——

=(argmaxE[U | do(H(o) = (o) ),0 = 0})

a

= argmax]E[U do(H(o) = a),O = 0]
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Goertzel's Counterfactual Reprogramming Decision Theory
(CRDT)

> Assume that the agent’s brain is partially reprogrammable, but also
has certain immutable properties.

> Imagine a Master Programmer (MP), able to replace the
reprogrammable portion 7y of the agent's brain with an arbitrary
computer program m of length </ and runtime < ¢.

> The goal of the MP is to replace the reprogrammable portion of the
agent's brain with a program n* having the property that, averaged
over all possible worlds that are consistent with the agent’s current
world-knowledge (using Machanised Causal Graph), operating 7" will
cause the agent to get maximal utility.

MP : g > 7" == argmax E[U | do(n)]
Ve

> |magine that the MP replaces the reprogrammable portion of the
agent's brain with a new program m* right now.
> Figure out what action 7* would take, and then take that action.

Prx = PMP(x*) 567 /954


https://goertzel.org/CounterfactualReprogrammingDecisionTheory.pdf
https://casparoesterheld.com/a-comprehensive-list-of-decision-theories/

HRB=EREE? EDT vs CDT vs FDT
> 1ExleEleﬁfﬂl‘]HﬂiF J%memiwglaﬂ# =

> EDT: A
» CDT: R
> FDT: ¥R
> IR Agent FIRFEANHIIR T BT ARSI TEETE, 3B

24 FDT = CDT.
> RSN BERTRRYVE, FOT HEMAEXLELTENE.
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o LEH The Psychopath Button

> B MR, BT E, (RATLIRSE “FraRISHR
> RIBEEE—NEEHRIIHRER.

> (BERERBMHRA SR NXEFRRE.

> RTRAIS R —RE S AR,

> (RS T REE?

........

E 1 I1 Psycho :

» EDT: not press {REVIT /918 7 L IRRE SR
> CDT: press {FZHIRYTA, AROZFIRNASZHZITARMNEIRIEE
» FDT: not press 17J'<E"Jﬁ?3%%ﬂ_?7{fﬁﬂ"]‘%§jf§4



EDT vs CDT vs FDT

Under EDT, actions are not special: they are dependent on other state
variables.

— EDT updates all values that are correlated with its action, even if
the correlation is merely statistical.

Under CDT, actions are quite special: they are not dependent on any
other state variables.

— CDT only updates the effects (not the causes) of its action. In
Newcomb's problem, the action is taken as uncorrelated with the
prediction, even though the predictor is known to be highly reliable.

Under FDT, actions are also special: they are only dependent on
decision mechanisms.

— FDT update their beliefs about the outputs of decision mechanisms
correlated with their own.

EDT respect too many correlations, while CDT too few.
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—JTIE vs YIEREN Agent

e
Agent [ NG
a

At | e
IRt N INE
S B

Agent
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Parfit's Hitchhiker (Transparent Newcomb)
Problem (Parfit's Hitchhiker)

You are trapped in the desert. “Oracle” drives by and says she will drive
you to the town, saving your life, but only if she predict you'll pay her 1000
when you're there. Do you pay “Oracle” 1000 once you're in town?

do(a)

» EDT: not pay / tow-box

» CDT: not pay / tow-box

» FDT: pay / one-box Updateful-FDT: not pay / two-box
Remark: why updateless? the veil of ignorance?
Remark: what about self-modifying agents? 572954



Twin Prisoner’'s Dilemma

> Assume you and your clone are arrested .....

I E I

N

> EDT: co-operate
> CDT: defect
» FDT: co-operate Updateful-FDT: co-operate
Remark:
> RESEIHES? KIEILREESBABETHEREENITSE. (vs
FAUNC) — MRAABGIR—HE XX, BB YY. ATLA, ARARIZ XX.
> FIHRIEN?
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Physical Variable vs Logical Variable

]
c

5

> Whether you imagine you are controlling a physical variable or a
logical variable (the output of an algorithm).

> In other words, whether you are choosing for you, right here right now,
or whether you are choosing for agents like you in situations like this.

574 /954



XOR #)ZR

> (RRBIECIREENE, &8, HEmA—BA.
> FAE=2X Oracle {{IREFHKT—HE:
— BABERRESEWNE. BEeFSFXEEIRNE TEEA—
BRI (1) IRERBWE, (2) (REFLEH—TREk.
E

.

I

-

l

Ttk

A3

» EDT: pay
> CDT: not pay
» FDT: not pay
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> FDT: RLEEEEEIR.
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LR

> (FETREEETE Oracle FFE. Oracle LAULEIZR{R—TBREK.
> WNR{RAMTER, Oracle RBIRAVRIBAZ FAX, (BXENESREE
Oracle (UIZRITA. (RMABZEARZ—BHNEERK.
Oracle TRUHRBEES(TER, FIRAH TEIZRE.
7 :

v

1
11
A I

> EDT: pay

> CDT: pay

» FDT: not pay EMAISRRE L Oracle HBEREIFEEMR.

> Y1ER Oracle FBMISEIRERAET 0.1%, FDT a5k, 577954



Counterfactual Mugging

> The Oracle comes to you and says: “I just flipped a fair coin. |
decided, before | flipped the coin, that if it came up heads, | would ask
you for 1000. And if it came up tails, | would give you 1 million iff |
predicted that you would give me 1000 if the coin had come up heads.
The coin came up heads — can | have 1000?”

E“L

l

RTE

> EDT: not pay
» CDT: not pay
> FDT: pay Updateful-FDT: not pay
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7

You have three options. You can remain in Damascus, you can travel
to Aleppo, or you can pay 1001 to climb Mount Olympus.

The day that you will die is fixed ahead of time. DEATH predicts
ahead of time where you'll be when you die, and if you are somewhere
else then you get to cheat DEATH and live forever.

The day before you die, DEATH tells you “l am coming for you
tomorrow".

You value immortality at 1000.

If you end up climbing Olympus and dying there, you get to speak
with the gods post-mortem. Such a conversation is worth 1501 to you.
So, dying on Olympus is worth 500, but surviving is worth —1.

DEATH
Allepo Damascus| Olympus
Aleppo 0 1000 1000
You Damascus 1000 0 1000
Olympus -1 -1 500

579 /954



DEATH

Allepo Damascus| Olympus
Aleppo 0 1000 1000
You Damascus 1000 0 1000
Olympus -1 -1 500
IpeaTH < ﬂH:

| l'

» EDT: Olympus
> CDT: not Olympus
> FDT: Olympus

580 /954



FDT vs Backtracking Counterfactual — ToDo
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Nozick's Decision-Value Principle

DV(a) = wc - CEU(a) + wg - EEU(a) + wg - SU(a)

» CEU: Causal Expected Utility
» EEU: Evidential Expected Utility
» SU: Symbolic Utility that an action may have for its own sake

582 /954



Remarks: 37fa “Aig" B9 FDT

SFEEREE, RMUTFEARPELXIFR FE"
— XEkFH, B “BF, R
— XNEITEASNE B AZ NS ™R, FEHEZRS.
FD}Ta HEXTERIITINE, SINECHRRIRES “AF&RE" —HF
=
— R—IE1! KABED, FEMEEER!
TICETHEE, K2MtEE RREREES, MHFEMA.
— FDT AEZEH AL EKER!
QDT BERM IREEMIFRER" R {RIER I IFRER
Updateless? FoENZ 5.
— BFRRRNHIR TTI RS
— ZERNEFRARIEE S RFEH].
3 HIR”, It FRIR, A BB
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FDT vs AJY fRin &

i Agent SRB% ——| Agent BIE

[ S . A
| I R | IS
optimise here? or here?

> Agent EAZEESE Agency?
— ERBZERIE, BB BIRSERIEIER .

> SN Agent ELASRIREERREARITF? SARERI “IEE"?
— FDT {Rf& Agent IR “IaEE" &1F MAZERMN " BEE"

> EEET BIRRUERR? 7 7 BEESTE REMS7?
Causation + Foreseeability of consequences + Intention oc Responsibility?
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v

v

Moral Agent vs Moral Patient

Moral agents can tell right from wrong, and can be held responsible
for their actions.

A moral patient should be treated with moral principles by a moral
agent.

A typical adult human is a moral agent, and a moral patient.

> A baby is a moral patient but not a moral agent.

v

Could / Should an Al agent ever be considered a moral agent /
patient?

585 / 054



Dualistic vs Embedded Agent
Blueprint / Self-Awareness

MELNEEHRRGER, AT ENEE 2.
LR ENEIMERIFTSRIE, AT EESM R R a8
BEN, AILAY REIS =8B SF/INERI—E07 . iRBHasRskt
BHASWHRTEEN, (B LEEEFEREEMRTLT
GE. X, BRIEMEHH A ASHZ BB THEIE, MR
H—FEEEHRERIRES.”

— AR (At4)
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Sequential Decision — Dualistic vs Embedded Agent

€
Agent [* | IRE
ar

Edr
=
>
o
o
S
—+
>

,,,,,,,,,,

3 BRSS! [

uler | ®<ras, Tps1m) = ﬂ(et | ecra; N {331;00 Vi<i<m:m(aey) = ai})
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Dualistic vs Partially Embedded Agent — Wireheading

> Agent 2 “ZiTthY", BENE, BRNEIRE s/ Fh, Agent BIBHE a, EI
MER o, F& b, B :327%' 0 r EEMT RISTTERES

> & Agent 12 rcEl’J JLJ%’*HJJ “B T ERATURY.

> EERTIT Agent, TEBIIEN s, KB r,. EAM o, Bl r, 1B
K&k, eFAX0 o).

!

a <

Fmax, Pmax = argmax R;(s;, ), Omax = argmax R;(B;(s;,0))
beAS 0e0

Rumax: Bmaxs Omax Wireheading: i27%8—1 "BERARY" $3HATLEE A, o5



https://arxiv.org/abs/1906.09136

BRI\ Agent RIS AR

| RN
o S
3. EXEERD

> EUERENFERTRAES (1E58)
> SRRV (RdwtE, SSNEREES
> EREIFERFHEN, NATREENF IR REAT)I5EE
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Wireheading

> R[NEREIBERTRIAT 3E.
> Agent X3 ©F BT EM=HIEED.
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Current-RF Optimization

> FISRIRIRMERE of THERKAVRE S:.
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(RIF R ST

EEEEF (RER)

>

>

»

| 2
>

TEIRERAEEHEE, QTR RIAEEAMAMES T
BREROMRGHE CHERT L, ARILMRMNEEREE RE
REEETS R T, ERFFX AigERE], AMEHRTE CRUIEHEES.
BREBFET IR TBREARE, theeiFid 78R B

i Preference Mechanism =—<Preference

ToREF: KT “(miF i RIdiE " BRI R RT
RFRABE—MR—ERD, (RESRBE SR — R EXRISTEY
AIB? (ESFRRERENR?) 592 /954



BE

> BelZZnris b == JER 2/ =1 a7
BefE LS B eSS RBESIME IR B = D EE =180
1. XFHFNERERE,
2. XTFBESEHIERIEE;
3. UR—1 77, BFECREREX MR NG

> BERNARRNERANTD. WE— 1 EEREIIASRRER
LM, BRZIFE AR E SIX—BESERNRE, FEAER
RiTEIRRST-ERIFNER. BRECHBE, FREIFARRE
Z%ElﬁiBE, BEX—a8miE Agent FIERECEIAE T BREE
YK
> WIRBAIERHBRETTTEM X = » FIEE, ARERRIIACH
EAREZE RMEERAE X = v/, KBS TE2ERR =5

BEBREE.
— IR (Rft4)
P(Uxew | X = %) 7
P(Unew | T =17) 7
FREIRAR: )N, SUXFNER, RAZIBEEEEATEER . ©

503 /954



DEIKF. TS RESE

Example
> Alice 1 Bob ZREKIE, MNESRKERL+LAEEREEKE.
> Alice ET7]E, Bob fEESEXERIFNMRISIFERIRIE T fth—3K.
> RSFURIRLEESREENE.
> XFEKKEEEEEEENEREERE?
MR Alice P TREBLEE:

P (Ymemmxy = SSEHK | X = BEEEHCIN)

Example
> Alice & 100 JTX ¥ —KEEEE. XEEFNRUEET.
> Bob T Y 100 STTMEALHERE, WETAIN 100 TTAW T, EALL
RERRZ1T.
> XA KEEESEE?
P (Ypzr = BX—KE | X = BXT)
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Causal Inference vs Reinforcement Learning

> Action ~ Treatment
Reward ~ Outcome
> These two areas share some similar challenges: (1) How to get an
unbiased outcome/reward estimation? (2) How to handle either the
observed or unobserved confounders?
> How to rectify misbelieve in the existence of confounders?
> "Given that | believe M2 is better, what the payout would be if | played
M2?" (intuition)
> “Given that | believe M2 is better, what the payout would be if | acted
differently?” (counter-intuition)

v

» The environment is an

Policy <~ Environment >
eeenees yi=a SN unobserved confounder.
o< ? N » How much of the reward is
gl "N caused by the agent and how
Action »{Reward much by the environment?

> Exploration vs Exploitation
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vV v. vy

vV V. vV vV vV VY

Cl + RL

Helping agents understand their environment via a causal world model
Adding causal bounds on regret expectations
Improving action selection with causal knowledge

Making agents more robust against observational interference or
interruptions

Reduce state space

Reduce action space

Handle confounder

Understand when and where to intervene
Counterfactual decision-making

Transfer causal knowledge
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Causal Reinforcement Learning CRL

state

_—

Agent action  Environment
CNE SCM M
reward

> ©: Parameters about the environment
> G: Causal Graph
> M: Structural Causal Model
> action: observational, interventional, counterfactual
Remark:
> environment can be modeled as an SCM M, which is rarely observable
> each SCM M can be probed through different types of interactions:
observational, interventional, counterfactual

Goal: Learn a policy 7 that maximizes reward argmax , E[U | do(7)].
597 / 954



Reinforcement Learning and Causal Inference

Goal: Learn a policy 7 s.t. sequence of actions n(-) = (X1,...X,)
maximizes reward E,[Y | do(X)].
> Online learning
> Agent performs experiments herself
> Input: experiments {(do(X;),Y;)}; Learned: P(Y | do(X))
> Off-policy learning
> Agent learns from other agents' actions
> Input: samples {(do(X;),Y;)}; Learned: P(Y | do(X))
» Do-calculus learning

> Agent observes other agents acting
> Input: samples {(X;,Y;)},G; Learned: P(Y | do(X))
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Reinforcement Learning and Causal Inference

> Online learning — do . (x)

U n U
/// \\\ 3 \\\
7 Sxu » Y
X Y X Y
> Off-policy learning do,/ (x) — do,(x)
n U T U
""" \\\ == \\\
» “a » Ma
X Y X — 7Y
> Do-calculus learning see(v) — do(x)
U n U
/// \\\ - \\\
x” Sxu » S
X —7Z ——>»Y X —7Z —Y
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Online learning — do,(x)

> Finding optimal action x* is immediate once E[Y | do(X)] is learned.

> E[Y | do(X)] can be estimated through randomized experiments or
adaptive strategies.

> Pros: Robust against unobserved confounders
> Cons: Experiments can be expensive or impossible
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Off-policy learning do,/ (x) — do,(x)

> E[Y | do(X)] can be estimated through experiments conducted by
other agents and different policies.

> Pros: no experiments need to be conducted
> Cons: rely on assumptions that (1) same variables were randomized and
(2) context matches

Paly 1d000) = 3 P (o) 2 S Prlx] )

Pr(x]c)
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Do-calculus learning see(v) — do,(x)

s N B N
e N et AN
s N N
X £ » EN

X —7Z —7Y X —7Z —7Y

» E[Y | do(X)] can be estimated from non-experimental data (also
called natural / behavioral regime).
> Pros: estimation is feasible even when context is unknown and
experimental variables do not match (i.e., off-policy assumptions are
violated).
> Cons: Results are contingent on the model; for weak models, effect is
not uniquely computable (not ID).

P(y | do(x)) = > P(z|x) ) P(y | ¥',2))P(x')
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Representation Learning

We seek a tractable representation of data sampled from a complex
space.

This representation should preserve structure within the data space.
Let X = [J X; be a space, viewed as the union of open sets X; € X.
A representation isa map F : X — V s.t. for any g;; : X; — X; in X,
there exists an associated f;; : V; = V; in V s.t.

fij (F(X;)) = F(gij (X))

s R
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Causal Representation Learning

Definition (Causal Representation Learning)

In causal representation learning, we aim to learn a set of causal variables Z
that generate our data X, s.t. we have access to the following:

1. Causal Feature Learning: an injective mapping g : Z — X
2. Causal Discovery: a causal graph G among the causal variables Z

3. Causal Mechanism Learning: the generating mechanisms Pg(Z; | Pa;)

Inference Generation
€

X —> Encoder —>Z —» Generator —»_X'

Data Latent Data
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Causal Representation Learning

Problem: SCMs usually assume the causal variables are given.

Goal: embed an SCM into a deep learning model.

Idea: realize the U; as noise variables in a generative model.

Given an image with pixels X = (X1,..., X4), construct causal variables
Zi,--+,Zy(n < d) and mechanisms Z; := f;(Pa;,U;) fori =1,...,n such
that we get a disentangled representation

n
P(Z1.....Z:) = | | P(Zi | Pay)
i=1

with P(Z; | Pa;) independently manipulable and largely invariant across
related problems.
1. encoder e : R — R” taking X to a latent representation
U= (Uy,...,Up).
2. structural causal model f(U) determined by the mechanisms
fl’ AR ] fn
3. decoder g : R* — R¥ taking U to X.

Embedding training: go f oe = 1x on the observed images.
605 /954



Gy ==yviny = |=] )l

> IPETERRAERFS. &, MR, FHRY?
> (MBI AEREE?
> BA VBRI ARBE?

LDL

Pl a
Diet Heart-Disease Diet — TC - Heart-Disease

N
HDL —

TC=LDL+ HDL

> Observed variables: all

> Manipulation variables: TC

> Qutcome variables: HD
Remark: XEEIHR IR AJRFE. WRERENTHESNESEE
IEERMIRE EIEEBRTTAZIRIZAT.
BT, IR AZEN S THA?
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Causal Abstraction
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COONOUAWN R

Causal Reinforcement Learning

ML R HSRHERR.
FESRAIRS [ SHEERE.
S (FTREESRRR) HUE.
FERRBRERAFIR.
RUETRRAVER.

2 NIRRT
FIRRHFHER.

SESSE a1

{E PRI R R BT,

{sE PR R SR AT SR SR /M E R

®

Buff \\‘®
@/’ @J[@ /E":E?“"s \@‘ Other Environments
o U=t || S i

Human
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The three components of causal learning

RS | REEh | RS
ERERES | WUKE | ERsE E}?Eff?ﬁgfﬁﬂﬁ
b~ Y
IREL rﬁgax\;&fﬁ%{j&
SEP| ERTR | ERE ik
FSEIE ) FRE EREDI REWELREMIR

BT
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e LA T RIRFES0S?

BILAA Li-data FIERPAWRE (RRE) JlgG— MR MEIAFE I &N
FISRRE.

Causal
Inductive Bias

Neural Model

SCM W

(trained)

(Unobserved Nature)

Training =
Use Li-data

to learn M .
: ;
5 0 - 3
LiPOV) Ly POV | do) L;:P(V,|x’ﬁ LiPOV)  LyiP(YV|do) Ly:P(Vy]X)

Observations Interventions Counterfactuals Unobserved
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Causal Emergence vs Causal Representation Learning

Causal Emergence Causal Representation
Identification Learning

e
dynamics
4 Model

/
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Causal Decision Making

.
e
.

CEL
fr—— a1
a2
Cé@,

CPL @

[Causal Policy Learnlng] a ‘0‘2 = a1 o
®

ct Learningj

do(a)
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https://causaldm.github.io/Causal-Decision-Making/Overview.html

Causal Policy Learning

Offline Dataset {(s;, a,, 7}

Context s,
Buffer
Behavior
Policy m;,
Target
Action a, Policy 7"

(a) Offline Policy Optimization

Offline Dataset {(s,, a;, 1)}

Context s,
Buffer
- Estimated
Behavior Offline Policy Value under
Policy 71, Evaluation policy *

Action a,

Target
Policy T

(c) Offline Policy Evaluation

Data at time step t (s, @z, Tr)

Context s,
Buffer
@ ;P
Update my4q
Action a;

L ]

New Policy 7,41

(b) Online Policy Optimization

Data at time step t (s, @, 7))

— Estimated
Value under
policy 1,

Context s,

@

Action a,

Update 1,4 Early Stop?

New Policy 7,44

(d) Online Policy Evaluation
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https://arxiv.org/pdf/2502.16156

Robust agents learn causal world models

> Assuming the world is a Causal Bayesian Network with the agent's
actions corresponding to the D (decision) node, if its actions can
robustly control the U (utility) node despite various “perturbations” in
the world, then intuitively it must have learned the causal structure of
how U's parents (ancestors) influence U in order to take them into
account in its actions.

» Policy Oracle Iy I8 o € = METHREE 7.

o = [y no(D | Pap)

o = do(rain) > Iy » 7, (open umbrella | outdoors) = 0.95

> Assume agent satisfies regret bound for all local interventions o on
any variable V. Then we can learn an approximation of the underlying
Causal Bayesian Network (CBN) from the agent’s policy oracle.
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https://arxiv.org/abs/2402.10877

Policy + Goal — World Model

1. RL/Planning: world model + goal — policy
2. IRL: world model + policy — goal
3. policy + goal — world model

s ) t
Environment

N -

——
1\ J World model

> Any agent capable of generalizing to a sufficiently wide range of
multi-step goal-directed tasks must have learned a predictive model of

its environment.
615 /954
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Remark: Domain Generalization vs Task Generalization

> An agent capable of adapting to a sufficiently large set of
distributional shifts must have learned a causal world model.

> An agent capable of generalizing to a sufficiently wide range of
multi-step goal-directed tasks must have learned a predictive model.

» Domain generalization (adapting to new environments) requires more
knowledge of the environment than task generalization (generalizing to
new goals).

> A causal world model is needed for domain generalization
(distributional shifts).

> We don’t need as much causal knowledge of the environment for task
generalization.
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FREY vs FoiREY

ECRIRIN F R 2 RIET
WRIKD, BHZIUSE, &
RORTTNRY AR RN —EUE
RIS F.

R F BB BRI FRAY
HENMERDEEERES, C5ein
TIEERIES: FERAKIERT
BE, RKEI/NFAAUE
28, FIIAIEIAER
BL

XEUR T IRAFEEE, B
EH T MIRAIEHRFZ.
FTARBIRIHREFS), OIRER
WA HRA B, BRIR
THEE.
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Reinforcement Learning

References978
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Reinforcement Learning

Reinf‘o‘rcement Learning

SRS

(282iR)

BMIAESSIE

[10] Richard S. Sutton %] Andrew G. Barto %
o wE

"ideas matter"

(e) Reinforcement Learning  (f) Richard S. Sutton (g) Andrew G. Barto
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Pleasure = Immediate Reward # Good = Long-term
Reward

“Every art and every inquiry, and similarly every action and pursuit,
is thought to aim at some good.”

— Aristotle

“Even enjoying yourself you call evil whenever it leads to the loss of
a pleasure greater than its own, or lays up pains that outweigh its
pleasures. ..Isn’t it the same when we turn back to pain? To suffer
pain you call good when it either rids us of greater pains than its
own or leads to pleasures that outweigh them.”

— Plato

Value function = prediction of reward = the sum of upcoming (pleasure — pain)
> The reward hypothesis: All goals can be represented as the
maximization of expected cumulative reward.
> The reward-is-enough hypothesis: Intelligence, and its associated
abilities, can be understood as subserving the maximization of reward

by an agent acting in its environment. 619,/ 954



Reinforcement Learning

perception

action

reward

Goal: Maximize reward!

von Neumann—Morgenstern: ¥1R{RIFAR ~ BETHIE. BB, &L
PRSI, MEE—DREL v (518 a - b BB u(a) > u(b).°

IOINRIRREBI RIS, BREHRF X RNSEY, MARR—E “"ARKSHER
MAREAL”.
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52 Bratman HY BDI &8

Perception Action

Revision m
Reasoner M—*

s

> Beliefs about itself, other agents and its environment
n(als),n (als),P(s |s,a)

> Desires about future states (goals) U(s)

> Intentions about its own future plan argmax , E[U | do(n)]
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Reinforcement Learning Agent

Action |

3
>

j . . : v
© Planning ,* *.Learning !
<;:'>: . . ‘ Environment

.| Transition o Value
' Model ”| Function | :

Optimization
Procedure
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\
Agent

Transition
model

* N\\\Planning
. ) repzifnt:um Ré‘a\Ctive -
Sensation - o > Action

v
\
W\
\

Last

action iLearning
y

J

function
A

|

Reward

. Perception produces the state representation

2. Reactive Policy quickly produces an action appropriate to the state

. Value Function evaluates how well things are going, and changes the
policy (learning)

. Transition model predicts the consequences of alternate actions, and
changes the policy (planning) 623 954



Will intelligence ultimately be explained in

Objective terms?

> states of the external world

> objects, people, places,
relationships, atoms

> space, motion, distances

> things outside the agent

or  Experiential terms?

vV v.v.vYy

sensations
actions
reward
time steps

things inside the agent
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v

M AR Agent” Bl “425G Agent”

RL Agent [ RBLATINE, RBIEIRAEHMES. (FKHARE = Good)
IMEFREEIRSIREIRIRIARSRIZFIRITTN. (7T HREER)

Agent HEEEITZEESRBCTFHRER, Reg@ I 7a1s/mtd
5.

IR Agent EIHFRHIE—RE.

Agent B RIESS.

ENWRE vs SRS — TEUSITE AIHFUIRE.
SIPINSENTRERNRE, AT NFHEHIAREKER.

Agent YR FIEAZINZF BEEMEFHIRZELY, MIFARTUZHYR
4.

Agent NETHBESEWHITAL /HEE, MIFERARRIZRIERHE
TEAEZR.

RN R T HRAPASIASIEERY. MEHMETTNEL.
BRSNS PFS). —JEXFER.

Rl EEEk AR LR, 1TohsRREFNZRIRENER R BN L.

— TEXTFEE, FEEMAERELEEE.

625 /954



The Era of Experience

“What we want is a machine that can learn from experience.”
— Alan Turing 1947

Era of Simulation Era of Human Data Era of Experience

AlphaZero

Computer Use

9ouabijjsyul uewnyiadns

ChatGPT

Attention on Reinforcement Learning

2014 2016 2018 2020 2022 2024

Year

- IRURHS: SRR, BRI

2. NSRRI RIMEASREIRUERNRERERZES, B XI55

A
- BRI Agent BCSINERENEEIEIK AV EBEZRNZE
S VNI A=L W TN 626 /954


http://www.incompleteideas.net/papers/TheEraOfExperience.pdf

RL's Computational Theory of Mind

It's all created from
the scalar reward signal

Poli
olicy ¥ Value
Function <

Predictive
Model

together with the causal structure of the world
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RL's Computational Theory of Mind

State ) Transition
features Options models

v
Perception Play Prediction Planning
(constructing (problem posing (learning predictive
state features) and solving) knowledge) \

Improved values
and policies
throughout

Feedback from the pillars
directs feature construction

1. Perception: learns state-update function s; = ®(s;_1,a;-1,0:-1).

2. Play: poses and solves many subproblems/subtasks to attain features,
outputs policies 7 with termination conditions that attain the features.

3. Prediction: learn a cause-and-effect transition model P.

4. Planning: improves value functions V and policies 7. 628 /95



Much of Mind is about Prediction

Perception and State Representation can be thought of as making
predictions

Models the world and cause and effect can be thought of in terms of
predictions

Planning can be thought of as composing predictions to anticipate
possible futures, and then choosing among them

Learning Value Functions is earning predictions
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To Know is to Predict Experience

Knowledge is predictions
> of what will happen

> of what you could cause to happen
— at various time scales
— conditional on actions or courses of action

Predictive Knowledge should be

1. Learnable — from low-level sensorimotor data
— Autonomously verifiable

2. Expressive — able to express abstract, high-level facts as well as
specific, low-level facts

3. Useful — for action and planning
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Definition (Markov Decision Process MDP[SB18])

An MDP for an accessible, stochastic environment is defined by

>

Set of states S

> Set of actions A

v

v

v

Set of rewards R
Transition model P(s",r | s,a), with 5s,s" € S, ae AandreR
Reward function r : S X A — R

r(s,a) = Z r Z P(s',r|s,a)

reR s'eS
Transition model: P(s” | s,a) := Y, P(s’,r|s,a) is the probability
reR

that state s’ is reached, if action a is executed in state s.

Policy: Complete mapping 7 that specifies for each state s € S which
action m(s) € A to take.

Wanted: The optimal policy 7* is the policy that maximizes the future

expected reward.
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Example: MDP
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Example: POMDP
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Value Function

environment

U

Definition (Value of a state under 7)

V™(s) =E ZyerkH Sy =5
k=0
Definition (Action-value under )
Q7 (s,a) =E Z’}’k"z+k+1 St =s5,A; = a]
k=0

Sutton: “Ethics is just values held in common by many agents.”
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What is Evil?

The only good is knowledge.
The only evil is ignorance.

— Socrates
It's the belief that your greed or grievance supersedes all standard
norms of society. When you elevate your grievance above those

universal norms of society, that’s evil.
— Judea Pearl
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Optimal Value & Optimal Policy

Definition (Optimal Value)
V*(s) = max V™ (s)

0*(s,a) = max 07" (s,a)

Definition (Optimal Policy)

A policy & is called optimal iff Vs € S : V7 (5) = V*(s).
— or equivalently, Q" (s,a) = Q*(s, a).

n*(s) = argmax Q* (s, a)

Remark:
> We maximize reward by finding and following an optimal policy 7*.
> To find 7* we need to first find the optimal value function Q*.
> To find O* we need to repeatedly find the value function for a policy
Q7 that is our current best guess at the optimal policy.

> To find Q™ we may need to learn a transition model P(s’,r | s,a). o
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Policy Search
> |dea: directly optimize policy
> Policy may be parameterized Q functions, hence:
n(s) = argmax Oo(s,a)
a

> Stochastic policy, e.g. given by softmax function

0Qo(s.a)
nglal|s) = —
D eQol(s.a)
a

> Policy value p(8): expected reward if mg is carried out

Remark (Free Will?)

?Erik M. Rehn: Free Will Belief as a consequence of Model-based Reinforcement
Learning. 2022.

> the “will” of an agent: Qo(s,a)
> the “freedom” of an agent: H(s) = — Y, mg(a | s)logmg(a | s)
a
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Friston's Active Inference

Minimizing Variational Free Energy

Q" = argmin F[Q, 0]

QeM
~ P(-]0)
P(o,s)
F[Q,0] = -Eg(s) |log 00s) ]
= —Eg(s) [log P(o,5)] —H[Q(s)]
N
Energy Entropy
,, —e = DkL[Q()IIP(s)] —=Eg(s) [log P(o | 5)]
i Complexity Accuracy

= Dk [Q(9)]IP(s | 0)] —log P(o)
———
Divergence Evidence
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P(0,s) Jensen P(o,5s)
o) = ow [log Q(s)]

= —EQ(S) [log P(O, S)] - H[Q(S)]

—log P(0) = - logz 0(s)

[
Energy Entropy
= Dk [Q(9)[[P(s)] —Eg(s)[log P(o | s)]
Complexity Accuracy
= Dk [Q(9)IIP(s | 0)] —log P(0)
———
Divergence Evidence

1. #HF4EIN “AEE ERETAEEM i LRSS BB
S-SR, ZTFIREREENRS, NiZRNAREMEREINES (&
AIBRER).

2. MY St (MMHERRT) SR Bt SHOMEER
AIERTENERIRRRE.

3. B MEESUSIMUEE; 1750 XIEMERLURAWIEHE.
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Friston's Active Inference
Minimizing Expected Free Energy

Prediction Observation

[ DISCREPANCY ]

Action:
change world

Perception:
change beliefs

*

" = argmin G ()
T

P(o,s | m)
(s | m)

G(ﬂ) = _EQ(O,Slﬂ') [log

", 0(o,5 1) =0(s [ m)P(o | 5).
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G(7) = ~Eg(oim | PrL[Q(s | 0,IIQ(s | 7)]| = Egiopm| log Plo | 7)]

Information Gain Pragmatic Value

=Eg(sim [H[P(0 | 5)]] + Dri[Q(0 | mIIP(o | 7)]

Expected Ambiguity Risk
~EQ(o.slm [log P(o,s | 1)| = H[Q(s | 7)]

Expected Energy Entropy

YEREEE" A LABM—FMARINE, _IL)\ﬁE‘ﬁJJ E[EZ N R
“SLAMME" BEREXNRIERES, BT SnxRY5twT.
E;CPG ERIER" 5 "THEMNME" ol g BRER" 5 “FIR” 898
.

2. BMY “TREBEIR” TTLABRR R Bl “ER” RIAERME.
EE/NJG ‘XIS BRI TRNTRAERYILERAYS \?‘E% SRStk miFE
.

3. R
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Phenomenal World vs Noumenal World

1. Phenomenal World: things as they appear to us

2. Noumenal World: things in themselves

> Kant argued that space and time and causality are part of our
perceptual framework.

> Kantian hyperpriors is how we structure our phenomenal world.

Kant's Copernican revolution: objects must conform to our cognition.

» Helmholtz: Perception as inference.

v

Figure: Reality can be experienced, but it is not possible to totally express it with
language. The experience of the world is a construction, constrained by external
data and internal beliefs, priors and assumptions.
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TETZESEREN

The law of contiguity. Itz _EHESPAVEYIakHHSIEE XKEX.
The law of frequency. YIRS RERORE S, KEXBEBA.
The law of similarity. F8{LIEYVEY), — S EBEF—.

The law of contrast. —]NEYJR]RES A BE B RAIEY).
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NRSIEZREN

sensor . . neural-network . imagination .
data —— impression > idea » complex ideas

> There are three different principles of association: resemblance, spatial
and temporal contiguity, and causation, which purport to capture the
regularities by which the imagination recombines simple ideas into
complex ideas.

> The memory, senses, and understanding are founded on the
imagination, or the vivacity of our ideas.
Traditional associationist architectures represent knowledge by simple
connection weights. (e.g., between the nodes of a neural network)

Bayesian associative models represent knowledge as probability distributions
(degrees of belief).
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Axonal arborization

AN

Axon from another cell

\

Synapse
Dendrite

Nucleus

\/

Synapses

Cell body or Soma

» ABNE 1000 {ZBN4ER8, 100 BIZE~ERE.
> HETTEIINIRKNEBES, BRI AT HE.
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McCulloch-Pitts A THRERMLE (2R HEES)
1

X _
SR

out ht bias
inputs weights 1 >0 A
+1

activation
X1 b _Uoutput 2

function
w1
\ 1
: y s |-
/ \@—‘ X>0 4
Wi /+'

Xn linear nonlinear X2
n

=g Z wWiX; + b lo
i=1
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domestication domestication

domestication domestication

n
1 if Ywixi+b2=0
1-layer NN y= El o

0 otherwise
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=
=

= =0 O
— O R, O

AR o )R

Figure: V, A, ®

wi0+we0+b <0
wi0+wel+b>0
wil+wo0+b >0
wil+wol+b <0

b<0
wo+b >0
wi+b>0

wi+wo+b<0

A simple single-layer perception can't solve nonlinearly separable problems.
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X1 ®x2 = (mxyp Axg) V (x1 A —x2)
~—— SN—— S——
y hy ho

Output Layer
107
7.84 -7.41

@ 0 @ Hidden Layer

499 549° 518 534
102
@ @Input Layer

Training Loss

Current Loss: 0.0011

Loss

0 200 400 600 800 1000 1200
Iteration
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Inductive Bias

input x output y

Parameters 6

L

Figure: B8 (/IO>R¥IEFE) & Walter Pitts & Jeff Hinton 656 /954



r
k= &by T Xgi(b; + Lia Wg) Wik)

Zj

a;

Learning: small change in weights — small change in output
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Problem (Hilbert's 13th Problem)

Can every continuous function of n variables be expressed as a composition
of finitely many continuous functions of two variables?

Problem

Is it possible to exactly represent any continuous multivariate function
f :R"™ = R as a combination of continuous univariate functions R — R
and the single binary function ‘+'?

HEMNEETES B RREBEITEZEREL
TEF ZLERIBEHEREE R SGD (+ ;EFEINE]) T EMERERSE A+

TR
N\

Po

N

Py
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A deep neural network (DNN) is a particular kind of function

fg:RmHRn

which depends in a “differentiable” way on a vector of weights.

v

Example: fy | | 0.2

0.8
:|: ]ERQ Pcat = 08pd0g—02

A feed-forward network with 1 hidden layer can represent any boolean
function, but require exponential hidden units.

A feed-forward network with 2 hidden layers and (computable)
continuous activation functions can represent any (computable)
continuous function.

A feed-forward network with a linear output layer and at least 1 hidden
layer and continuous and differentiable activation functions can
approximate any Borel measurable function from one finite-dimensional
space to another with any desired non-zero amount of error.

A feed-forward network with 2 hidden layers and continuous and

differentiable activation functions can approximate any function. 550 054



Deep Learning[GBC16]

pairs from X’ x Y

Training data

Learning Algorithm Output model

fixoY
Set of Models
HCY¥
© g}[ﬂj(%ﬁﬂk*ﬁ. ICAZ \ﬁj\nﬂf?
. hypothesis space — Network Structure — fy
2. the goodness of a function — Learning Target — loss function ¢

3. pick the best function — Learn — find the network parameters
0* = argmin L(0) that minimize total cost L(0) by gradient decent
0

0 — 0 —-nVeL(6)

where L(0) :=Ep [€ (fo(a),1)] + AQ(0) and Q(0) is a regularizer.
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THIS 15 YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE. DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN (OLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.
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Single-Task Learning — Multi-Task Learning

Training Data pasrg?::(tjer Parameter Test Data Loss
{(xi,yi)}:.;] n 0 {(xn+i’yn+i)}:’;]
+ I * +
Task 1 N e i L e f—» T | —20%
Task 2 —> 0%
Task 3 —>20%
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How Neural Networks Learn Distributed Representations

Horizontal Vertical Horizontal Vertical
Rectangle  Rectangle  Ellipse Ellipse

Horizontal Vertical Rectangle Ellipse

OO0 @
OXOX NO)
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| JEEICpEC)
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| NOX NGO
OO0 e
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L L
| |

Horizontal Vertical Rectangle Ellipse

@
O

&
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Number | Local Representation | Distributed Representation
0 10000000 000
1 01000000 001
2 00100000 010
3 00010000 011
4 00001000 100
5 00000100 101
6 00000010 110
7 00000001 111
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Epistemology — A Neurocomputational Perspective

uuuuuuuuu

> AHAANER “BORESRIERENE " MNETEHFRI—R), &~
B —RFEINFSI

» Churchland’s Eliminative Materialism: E[RMEARTFE. (DRINSAF
T

> KINEREMEIIINHMEERICREZRAMER, RIHCRT "Rz
B HEESN LEEIE FHEER. IRBEN SR/ MRETTRERIE
BT S MESE. B8 AR, qualia FHEESBMETTXIR.
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Why “Deep” rather than “Fat”?

> Exploiting compositionality gives an exponential gain in
representational power.
> Distributed representations: feature learning
> Deep architecture: multiple levels of feature learning
> Each basic classifier can be trained by little data.
» deep — modularization — less training data?
With more complex features, the number of parameters in the linear
layers may be drastically decreased.
> efficiency & sample complexity
> better memory/computation trade-off?

> higher-level abstractions — easier generalization & transfer
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Information Bottleneck — Learning is to forget!

Can we explain learning in deep neural networks?

Theorem

Let X be a sample drawn according to a distribution determined by the
random variable Y. The set of solutions to

mTinI(X;T) s.t. I(T;Y) = mT@xI(T’;Y)

is exactly the set of minimal sufficient statistics for Y based on X.

Find a random variable T s.t.:

» Y & X & T form a Markov chain.

» [(X;T) is minimized (minimality, complexity term), while
I(T;Y) is maximized (sufficiency, accuracy term).

T =

argmin
T:1(T(X);Y)=1(X;Y)

1(X;T(X))

is the Information Bottleneck between X and Y.

668 /954


http://naftali-tishby.strikingly.com/

Encoder
P(T|X)

minI(T;X)

Decoder
P(Y|T)

max I(T:Y)

SK=F: KRATLEIRISIES
B RAH, FREEHEMHHE.
£+ AFBm, HEAR.
RZ R, LAETTA.
FTRMEAT.

I 4h: iIDEICHES
TRERESTRIAL N AR, ATLALE
BENZEEEMIE.
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The Ultimate Hypothesis Space

» No Free Lunch: Sample complexity is exponentially large (w.r.t. the
input dimension) if the hypothesis class is all possible functions.

» Shallow learning (SVM, Boosting): Hypothesis class is linear functions
over manually determined features — strong prior knowledge.

> Deep learning: Hypothesis class is all functions implemented by
determining the weights of a given artificial neural network.

Shallow learning
(SVM, Boosting)

expert system deep networks

less prior knowledge
more data

Figure: Prior vs Universality

Prior — a necessary good or a necessary evil?‘
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In neural networks, we might still control the learning process using prior
knowledge in the form of:

> Constraints: forbidding some outcomes we know to be wrong;
> Regularizers: penalizing some outcomes we know to be less likely;

> Invariances: enforcing some patterns we know to be present:

> Rotational invariances for images.
> Preservation of objects for videos.
> Context dependence for language.
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Why Deep Reinforcement Learning?
Learning & Search

The two methods that seem to scale arbitrarily in this way are

search and learning.
— Richard S. Sutton “The Bitter Lesson”

Learning Search
use data to extract patterns use computation to extract inferences

-

allows us to understand the world

some optimization process that uses
optimization (typically iterative) computation to
make rational decisions

leverages that understanding for emergence

> Data without optimization doesn't allow us to solve new problems in

new ways.
> Optimization without data is hard to apply to the real world outside of
simulators.
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Deep Reinforcement Learning

fit a model/

It h th ~
estimate the return [ fo such that s11 ~ fo(st, ar)

generate samples

(i.e. run the policy)

backprop through fs and r to
train mp(s) = as

improve the policy
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Deep Reinforcement Learning

> Policy-based deep RL: Represent policy 7 : S — A as a deep neural
network

> Value-based deep RL: Basically value iteration. Approximate optimal
state-value function V(s) or state-action value function Q(s, a) with a
deep neural network

> Model-based deep RL: Approximate transition model with a deep
neural network

Model-based
RL

Value-based Policy-based
RL RL
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GAN — Generative Adversarial Network 2014

V(D,G) = Ex-py,, [log D(x)] + Ez-p,,;. [log (1 - D(G(2)))]
G* = argmin max V(D,G) (GAN)
G

Real Data

\
Fake Dat/’

Generator
Network

Discreminator Real
Network Fake

Noise ———

> Initialize generator and discriminator

> In each training iteration:
1. fix generator G, and update discriminator D: D = D + aDg—L‘;
2. fix discriminator D, and update generator G: G = G — a/Gg—(‘;

676 /954



GAN — Generative Adversarial Network 2014

Real faces
h Discriminator Fake
Deep Convolutional Network (DCN)

N

P

@

X

_@

g«

_ @

D«

Generator o
Real
Ra ndom n Oise Deconvolutional Network (DN)

—

Generated faces
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Stable Diffusion Model

Po(Xi—1]xt)
Oy 0 @y —E

q Xt\xt—l)
Decoder Decoder Decoder Decoder
Encoder Encoder Encoder EncEr
forward from xg to xr : q¢(x0.1) = q(x0) l_l qo(x: | x,-1)
reverse from x7 to x : po(xor) = pler) [ | potri-t | x)

=1 678 /954



From Transformer to BERT & GPT

ChatGPT: AIRZR. RN, EpfUiB. AR, MEREE. 5ig
3, NgR BIAR. FFER. TEMER. BE. SRl BIRE. BERE.
WEER, HBXE, 7N, SHERMEFHSSIER. BRA0
5. SBEIRE. RHBEHHERT. BMIBNERETF. MOE/ @5 /1E
RS, RHERITITIE

% THE TRANSFORMER

— C Adaa Normalze ) i

H L) L)
§ Geeroriara ) (Cresaromara )

ENCODER STACK DECODER STACK

e At & Normatize D)

: : H ) T
2 Gretrona ) Grestroward )
Crom ) Cm )| i m :
2| A D
DECODER H
)
1

» BERT(Transformer-Encoder) SEfiZEZ: BERFE
> GPT(Transformer-Decoder) XA R: & [*F|5H|IFIE
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ChatGPT 2023

Q: —MMEA, MEET 100 K, MZRET 100 K, BAEILET 100 XK,
RIMBCEZTFE. XA, ER T —LRE. iBia), XLEER(tA
EREERY?

BRAGIURMSEA AR AERIRA. EI, kAR TR LRAE,
mitRRERIEEBREE.
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Remarks: Scaling Law

1. BRI

2. RGN

3. BHFEIIZR Chain-of-Thought AYATE]S

4. Chain-of-Thought H#EIRRYAT(E]
FRIIHIRESD:

» T3] (In-context learning)

> F8SMRIA (Instruction following)

> L BHEIE (Step-by-step reasoning)

13Remark:

> SRUFSIZIRTHEERREORIRE.
> TIEMRENRIR B R REE FsR (U F IR THEIERE D ROESL.
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NIESHEEEIR — Example

[Question] Using the numbers from 1to 10 to Gemini 2.0 thinking mode (Dec, 2024)
make 2025. Using each number once and
primary operations + and * The target number is 2025. This is a relatively

large number, suggesting multiplication will
be heavily involved. It's also worth noting

[Answer] (10*4+5)*(9*3+8+7+2+1) that 2025 is 45 squared (45 *45). This might
or might not be directly helpful, but it gives
Let's break it down: us a sense of scale. **Prioritize
Multiplication:**Since the target is large,
e Firstpart:10*4+5=40+5=45 start thinking about how to get large
e Secondpart:9*3+8+7+2+1=27+8+ intermediate products using multiplication.
7+2+1=45 TheTargest numbers (10,9,8,7) are good
e Final Calculation: 45 * 45 = 2025 candidates for multiplication early on ... This
confirms multiplication is key, but simply
Therefore, the expression (10*4 +5)*(9*3+8 multiplying everything together is too much.
+7 +2 + 1) uses the numbers 1 through 10 We need to combine additions. ... Let's aim

for products that get us closer to the square
root of 2025 (which is 45) ...

exactly once and only the primary operations of
addition (+) and multiplication (*) to equal 2025.
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RNIESHREUEE — LLM Reasoning

problem answer

argmax P(final answer | problem)

P (reasoning path,final answer|problem)
reasoning path

> How to compute the sum then? Randomly Sampling!

> Self-consistency: Choose the answer that appears most frequently.
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RNIESHREUEE — LLM Reasoning

perception

action

Self-Improve

1. collect a set of problems and their step-by-step solutions generated
from the model

2. maximize the likelihood of correct solutions

> Why “generated from the model” instead of “from humans"?
> Directly optimize what we want!

argmax Ep [Quality(final answer | problem, 8)]
0
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Self-attention with learnable weights
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£ ® = L o = 9 5 9 35 = 2 £
F 3 E £ < 58 2 £ < © 2
o i 7] E
Q.
©
We have three weight matrices W, Wi, W,, for Query,
Query: ¢V = qu(’)
Key: k) = Wwyx®
Value: v = w,x@
. KT
Attention(Q, K, V) = softmax (Q ) Vv

<|

di

<EOS>
<pad>

>
£

“w-opinion

my

opinion
<EOS>/

<pad>

Key and Value
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https://arxiv.org/abs/2501.09223

Remark

> NELRHAORBERI, BIRMGESATLIE(ER
#iE, MIEHLE W AILIEIERER. 20
RIS

> EEREBIARET, SIRoiEsEsE
BN, TR R AEFE— i
S MEETTH) value b, SROMERRA W 2
PE)

> RSSO AT RN E
W EOBE FREDRR. SERIMEE S T
ESIRFIERES. (88 smn T8

> RBIERRE B AR B AR
TE, BRI R

BRI

— 5T
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Wittgenstein — On Certainty

» The propositions describing this world-picture
might be part of a kind of mythology. And their
role is like that of rules of a game; and the
game can be learned purely practically, without
learning any explicit rules.

» The mythology may change back into a state of
flux, river-bed of thoughts may shift. But |
distinguish between movement of the waters on
the river-bed and the shift of the bed itself;
though there is not a sharp division of the one
from other.

» And the bank of that river consists partly of
hard rock, subject to no alteration or only to an
imperceptible one, partly of sand, which now in
one place now in another gets washed away, or
deposited.
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Why Can GPT Learn In-Context?

Finetuning
> GPT produces
meta-gradients for GPT GPT
In-Context
Learning (lCL) through (Sentence1, Answer1) (Sentence2, Answer2)

forward computation.
Back-Propagation

> |CL works by applying !

v

these meta-gradients to Gradients AWy
the model through
In-Context Learning Dual

attention. View Answer
1

» The meta-optimization |gpT
[

proces.s of ICL shares a | Feed-Forward Network |
dual view with finetuning Meta-Gradints AW ¢, —
that explicitly updates  _-------- '| Self-Attention |
Forward | ——
the model parameters Computation
with back-propagated I
. (Sentence1, Answer1) (Sentence2, Answer2) (Sentence, ?)
gradients. . . i —
Demonstration Examples Query Example
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Reinforcement Learning from Human Feedback

B BHR
AR T AR HAT D SR

TN GEZHREY

I

T4 AEARE R
T RbEE

YRR KB SIEATR?

TR

____________ _A________,_____
P 1

R | ¥, ARE

C-D>A*>B

BALFE IR
AR 5RASE 3 Fik ) 4

................

A. Wit B. #hEIR. C. 1838, . LXLL.
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InstructGPT — Reinforcement Learning from Human Feedback

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis S
sampled from our
Explain the moon

prompt dataset. landing to a 6 year old

|

\J
Alabeler
demonstrates the 0
desired output ?
behavior. N

Some people went
ta the moon.

This data is used

to fine-tune GPT-3 ',}?'A.

with supervised W

learning. 2
BEE

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model =

Explain the moon
outputs are landing to a 6 year old
sampled.

Expiain gy Explsin war

Mensratusl Pacplevntts

A labeler ranks
the outputs from 0
L~ 4

best to worst.

This data is used &Y

to train our sy
reward model. 7

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

»

Write a story
about frogs

|
Y

PPO
.. 9
LY -
o

v

Once upon a time..
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CEEE — FHEE ~ M T (#es) A

User

A?‘éﬂﬁﬁ?

HEBATIEIRA BARE Yo
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(IR — MMERSTT (EBEIEST )
» Reward Model (Helpful, Honest, Harmless)

1085 (6) = ——E sy -0 | 108 (0 (r (2. ) = 70 (1. 30)) |

(2)

where rg(x, y) is the scalar output of the reward model for prompt x
and completion y with parameters 0, y,, is the preferred completion
out of the pair of y,, and y;, and D is the dataset of human
comparisons.

> Maximize the following objective function in RL training:

objective (¢) :E(x,y)~D,,§L [ry(x,y) — Blog (nf/)“‘(y | x)/75F T (y | x))]

+ ’yEX“’Dpretrain [log(ﬂgL ('X)):|

where 72 is the learned RL policy with parameters ¢, 7551 is the
supervised trained model, and Dreirain is the pretraining distribution.

Remark: 1, 1BIEABIRYF; 2. BE “EIN"; 3. PoLEETN)IIEREUEE L
AORIERE (RN “XI55" FTHAEN).

R
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DeepSeek 2025

GRPO(Group Relative Policy Optimization): XJFIaJfX ¢, GRPO j@it|A%R
B mo,, KE—ABEE {01,009, ..., oG}, ARG THERBIRREULHTER

Tg.

G
> {mm( Zo (( “"))A (hp( 7o (o; "l’) 1-e, 1+a) ) BDkL (7ol f)”
i1

objective(6) = By_p(0), (01)&, ~0,4(0l0)

where the advantage estimator is given by
+ _ ri—mean({ri,r2,...,rG})
e std({r1,r2,...,7rG})
> e S PSRRI E B ER A
> A BIRBRE AGs.0) = 0(s,a) - V(s) BIBIR, BEINERHERITF
7
> clip FHLESRISEFIREII K, (RIFIZISE.
> Dii(mollmer) IENMLIR, FHRFTRIEASRESE RIS AT
Remark: r; XeJLAFBIERALMEN, ELUN self-certainty, BP next-token T MIAEE
519557579 KL 5UE.
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https://arxiv.org/pdf/2501.12948

ST RRIRNIESEE

hy = ¢o(x1:1)
exp(xs, po(x</)/T)

po(X; | x<p) =

%eXp<y,¢e(X<t)/T>

n
0 = argminE,, -, Z —log po(x; | x<,)]
0

t=1
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KIESRRIAZ M [Liut24)

Mental Space

T

Indistinguishable up till 1=t

> Mental Space: hidden states
> KIESRE ¢ TEWN
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ChatGPT £18i% “[ER" 157

Mike, Jack, Ben, Susan, and Peter are at a party. There was an open
bottle of beer on the table. Mike is moving through the room and
accidentally bumps against the table. This caused the bottle to fall.
How responsible is Mike for the bottle falling?

ChatGPT: Mike is probably partially responsible for the bottle falling.
It sounds like he bumped into the table and caused the bottle to fall,
so he played a role in the incident. However, it is also possible that the
table was unstable or the bottle was already precarious, in which case
Mike's actions may not be the sole cause of the bottle falling...

Had Mike not bumped into the table, would the bottle have fallen?
ChatGPT: It is impossible to determine with certainty what would
have happened if Mike had not bumped into the table. If the bottle
was already precarious and was going to fall no matter what, then
Mike's actions may not have been the cause of the bottle falling.
However, if the bottle was stable and would not have fallen without
Mike's intervention, then he would be more directly responsible for the
bottle falling...
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https://newsletter.altdeep.ai/p/chatgpt-the-future-of-attribution

18R AR BRI R R [e)

> HNOZIREHZFEAIL? — 8)EIE R

(B—0

> BAZBEREI—M2? — BIEERIRR

)

> BEIEEERNZHAEE? — \ERERXER
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KNIESEEN "FHRFY" B
RSHNZE? EREEHS [Zet+23]?

Ly P(Y = BMRIEME | X = {REKIE)
Ly P(Y = BARIEME | do(X = {REIZ))
Ly P(Yx e = IR | X = (RIS, Y = BUYRTEE)

KT "BR LiLoLs R AY Ly AR ~— ERAI. FERHEHTHIEE

> FAEIKENRIES

> FIRIKENAYZS)?

> FIRIKERY “BEFS"?
Remark: BF LLM 7Ei&if Kolmogorov EZ%4 K, FRrLARTLUMEBI &3
Egﬁ%ﬁ%%ﬂﬂ\ BEDRREIRE Y. EiAMTERNBHITER

699 /954



[E48 PSS
~
Egﬁz—l Egﬁz Eéﬁtﬂ
...... P*
/
%z—l %t %Hl

> [EGEEEE, #IBIUT Kolmogorov/Solomonoff, BRI FREERAIL.
> ESRVEIEOER, BERTEYE.
> SHEFT, hEEEH.

700/ 954



NEGERIMBE “ARFS"
> EADRRIRSRAE 2
K(x1,...ox) = > K(xi | paj)
i=1

> EETFXIFRME K(0) + K(y | x) ZK(0) + K(x | ), 1RIE “BIEDRE
K REEFEISRRIRFME.

> AT RDERBKREFNE, FIFE "ERRIZERH

i=1
> WERHE Pc F0 Pric BHEMSL 1(Pc; Peic) 20, BBA

K(Pc,g) K(Pc) + K(Pgic) $K(PE) + K(PciE)
2Remark: \EGERIMBELHEFS:

. K(x,y) ZK(x) + K(y | x)
BEES K(y | x) FIUSE; (BEESESR xy, WAEBUEE K (y | x7).
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KNGS RAFIENXG?

Figure: Tai-Danae Bradley
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LLM BiEXIE? — B vs HFR"[BTV22; BGT24]
1. iBNAMEIS: F:T — Set

Syntax Functor _[ Set/FdVect ToP _Mj_)d' Set”
Category Category Th

2. IBEMAES:  KHEERA y: LP — Set!

> 1B RELFIRRTERIERS (0, 1]-enriched
Category L

> JBX: [0,1]-F78LH "RIRE" 5Bk [0, 11"
> KHSIE &~ Hom(E.-) =u(- |5
A =B < Hom(A,-) = Hom(B, -)
> Firth: [ANENX, ETFESHEHETIEZERY
BEER | LoP < [0,1]"
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https://arxiv.org/abs/2106.07890

KIESHRERNEL. 1BX

EE ZLEIER=TSEESERE [0, 1]-enriched Category L
> X FRFER

> SHT
_ ey lx) TR x<y
Homy,(x, y) = {O =i
B CERI SR

1=pux|x)
uy | x)-u(z|y) =p(z|x)
EX: [0,1]-7e3LRY “RIE" okt [0, 11"

Lep ;, [0 1]

.72] BE
59| BS

E% — HomL(%E, —) = 24 EﬁE:F%
0|
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Remark

> Traditional computer software tools resemble the standard
mathematical concept of a function f : X — Y: given an
input x in the domain X, it reliably returns a single output
f(x) in the range Y that depends on x in a deterministic
fashion, but is undefined or gives nonsense if fed an input
outside of the domain.

> Al tools, on the other hand, resemble a probability kernel
u: X — Pr(Y) instead of a classical function: an input x
now gives a random output sampled from a probability
distribution u, that is somewhat concentrated around the
perfect result f(x), but with some stochastic deviation and
inaccuracy.

— Terence Tao
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Question

What is meaning?

— language pictures the world?

— determined by its use in contexts?

— the relation between a linguistic form and communicative intent?

> Are meaning and form separable/inseparable?

> Can meaning emerge from pure linguistic form?
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KIESHEERNEN vs (EHIBNX

> SF—AFF x, BAOE RIS IR — RS T
Pry = {u(— [ 2) : g e [0, 1]V}, BAREA p(- | x) TREF « FSEL
fETRE RS

> Carnap: PREEAEHREIMENTE

fiL— {0
> Firth: FRIREY, EFESHERERZ BIEEER.
£ —[0.1]"
f i Hom(r, =) = (= %) = pa(-)
> SKH3IHE
Homy,(y,.x) = Homjg s (Homy,(x, -), Homy,(y, -))
B D B s u(- | BB 2D (- | B)
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NESERAEENG?
BEZE R” vs iIBXERAEE [0,1]Y  R™ vs [0,1]F
xeX vs o xe (=)
REEE vs SEEE:
P(p) = Z P(w) vs M(x)= Z 9-t(p)

WEQ p:U(p)=x*
e B85S | BFEEIE | ARG iBX
mpRlBg | Anil =L H R{0.1} [ wro (P(p)=1)
#iRie | EEE = SSE [0.1] | P(9) = X P(w)
WEQ

IBMEER:  d(x,y) = Diu(pxllpy)
BYEM CKESIE): x2y & dx,y)=0 & u, = Hy
Die(ullM) < K (1) In 2
EMELL x~y &= M, =M,
B “Prompt”: x* = argmin Dy (u||My)
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RNIESEEBRI VN E ARG

1. KiESEEEEMIFMIS? 344 EPR7ERRE?
> ZEMFUN, NEARBIAES, BEEMESS, BhEaERaTY
ToIRIES8es.
> PRTEMWRER? 7£ Solomonoff EBFEIA4R M, 7£ Kolmogorov EZ%4 K.
2. KIESIEEEEHT "RARFES" 15?
> BRiAEE EESRRFIANES. BT LLM E&IR Kolmogorov &
Z% K, FRLARTLAMEBN & A EHHRRREEREN,. EESREIRE
4. BRI FREVGIHITERAI.
3. KIESRERTY, “HREER" XaimiE?
> BTF LLM TEEIREAR M, 1 M JLALESEBERSE (S0
R—HH) EEFANEE 4, p ATLAELE LLM B9 “HFRIRE".
4. KIBESEEEENIG?
> 5l x BIEXNREEHERIRIEEERED T u(- | x).
> Al x SHNBHBRIOXARBIELAIRS 1 KRIX, EFE

> (GEKES EBREA, JLUENXIEXNEER. BEXEMN. #dmBdEE
BER M ENIESXABETE.
> LLM ZSEN vs Agent BIIRBEAMIEN
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Logical Positivism

v

Analytic-Synthetic Distinction
> analytic sentence = a sentence that is true/false in virtue of its meaning.
> synthetic sentence = a sentence that is true/false in virtue of its
meaning and how the world actually is.
Verifiability Theory of Meaning: The meaning of a sentence consists in
its method of verification.
> It's too weak! e.g. “All metals expand when heated and the Absolute
Spirit is perfect” is verifiable.
> It's too strong! e.g. “Superstrings exist” is not verifiable.

v

v

Observational & Theoretical Languages

v

The Role of Logic: analyze the language of science in terms of logic
(Deductive & Inductive).
Problems:

» Hypotheses cannot be tested in isolation (Duhem-Quine Thesis).
» Nothing is immune to revision, not even logic (analytic sentences).
— Move from classical to quantum physics requires analogous move from
classical to quantum logic!
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Popper — Falsificationism

> A theory is falsifiable if it is contradicted by an observation that is
expressible in the language of the theory.

> However, it is models of theories, not the theories themselves, that are
tested by experiments.

> In general, it is possible to falsify a parametric family of models, but
impossible to falsify the class of all models of the theory, for it is too
large.
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From Logical Positivism to Logical Empiricism

> Verifiability Theory of Meaning: The meaning of a sentence consists in
its method of verification.

> Holistic Empiricist Theory of Meaning: Theoretical claims about
unobservable phenomena gain meaning from their place in the
structure of a given theory.

Logical Empiricism theoretical Logical Positivism
jclaims

primitive
concepts

1
1 1
1 ’ \ < !
[ ASRLAERRN ! 1
N N S 1 defined
DAY A A ' concepts O theoretical
! 1 1 [ \ claims Q
: 1 : [ \
1 1
: 1 : 1 : : :
1 1 .. 1
empirical ! .
p observational |

concepts

claims RS%

"soil" of observation 712 /954




Logical Positivism

Phenomenolism

Falsification
THEORIES Rl
(Popper)
Realism
Correspondence
FACTS == Theory of Truth
(Tarski)

(based on existence)

Pragmatism

Pt

THEORIES

Pt lism

FACTS

> Pragmatism denies realism not only in the area of theories but also in

the area of facts.

> There is no qualitative difference between facts and theories.
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Wittgenstein: Philosophical Investigations

“I shall not today attempt further to define ‘pornography’; and
perhaps | could never succeed in intelligibly doing so. But | know
it when | see it.”

— Potter Stewart

We cannot define words.
Language does not describe facts, it is used to communicate.

The meaning of a word is its use in the language.

The various uses of words can be best understood as family
resemblance.

> use A is similar to use B, because they share trait X
> use B is similar to use C, because they share trait Y

If a word is used in a new context, we draw on the various uses in
other contexts.
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Wittgenstein: Philosophical Investigations

» How are chairs identified? chair-as-place-to-sit > place-to-sit

> chair = 4 legs, back, place to sit, .. /_"
» All chairs share a “family [ I‘.
resemblance” in appropriate contexts '\’Z\ ¢

of use.

This family resemblance can't be
formally encoded in a rule/definition.

chair
platform

form of life = basic set of practices, behaviors, principles (No external

justification.)

language game = pattern of linguistic habits associated with a form of

life.

Language does not represent; rather, it is used by communities to

communicate.

Terms do not gain meaning by what they represent; rather, they gain

meaning by how they are used. 715 /954



vV v. vy

EFENRH

RIEETASE—EF BEERERRE "BHR" AIRA.
RBEAEENAARTENFRA 81MARENECEFENRA
EFERNFREIESAER.

HEFIREMEIN BRI ). RARTEKRENNERY, (BAFERAANE
= BN EEZRMLERT. EENEXHAETIEERINAER
FBSTR, MET EEAFEES ITRIERS
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Quine 1908-2000 “web of belief”

What does “gavagai” mean?

> Scientific claims, common beliefs and opinions, are all interconnected
in a single unified belief system.

> Changes in any part of the system can be accomodated by revision
elsewhere.
(It confronts experience as a whole.)

> |ndeterminacy of translation
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> Holistic Theory of Meaning: A scientific term gets its meaning from
the theory it appears in.

> There is no single set of standards entitled to govern the justification
of beliefs.

> Justification of a belief system is internal to that system, not external.

> Scientific theories (facts) are social constructs.

What does “social construct” mean?
To construct X in the social world requires:

> Knowledge of X encourages behaviors that increase or reduce other
people’s tendency to act as though X does or does not exist.

> There is reasonably common knowledge of X

> There is transmission of knowledge of X.

718 /954



Philosophy of Language

> “Classical” view (pre-1953): language consists of sentences that are
true/false
> “Modern” view (post-1953): language is a form of action
Wittgenstein (1953), Philosophical Investigations
Austin (1962), How to Do Things with Words
Searle (1969), Speech Acts
Grice (1975), Logic and Conversation

situation

Speaker —— Utterance — Listener

> Speech acts achieve the speaker’s goals.

> Speech act planning requires knowledge of
— Situation
— Semantic and syntactic conventions

— Listener's goals, knowledge base, and rationality
719/ 954



Stages in Communication

Intention  Speaker S wants to inform Listener L that meaning m
Speaker S chooses proposition p such that Listener L is
most likely to infer m given p

Synthesis  Speaker S utters proposition p

Generation

Perception Listener L perceives p

Analysis Listener L infers possible meanings m1,...,m,
Disambiguation Listener L infers intended meaning m;
Incorporation Listener L incorporates m; into KB

Engaging in complex language behavior requires various kinds of knowledge
of language
> Linguistic knowledge: Phonetics, phonology, Morphology, Syntax,
Semantics, Pragmatics, Discourse
> World knowledge: common knowledge, commonsense knowledge

ET: SEEUER SRMsS7
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https://www.annualreviews.org/content/journals/10.1146/annurev-linguistics-031220-010811

ole &

Glasses
0]

My friend has
glasses.
L @ Speaker

p =argmax Pr(m | p)
p
Pr(m | p) o< Ps(p | m)P(m)
Ps(p | m) < exp(a-U(p,m)) «a is a parameter

U(p,m) = log PLit(m | p) — Cost(p)

Priw(m | p) = Xme[[p]]P(m) “informative"” to the Literal Listener 12195



TERAET (Paul Grice) RHERZIERY “EEFEN"

1. #=JEN (Quantity: be informative, don't undershare or overshare)
— REXNTGFRRINER, A AZ

2. JREFEN (Quality: be truthful, don't say what you don't believe)
— ARERIE, AIEEIIE

3. KBX[REN (Relation: be relevant)
— RRFTCKANE, AEIEFTE)

4. AR (Manner: be clear)
— BIRIR. BRI, EiE. BRE

Remark: Grice {9 “&{ERN" ABIERBEREL U(p.m) B.

> HEIRN. XEXJRN Pric(m | p)

> FRERN. XKEKFEU xefp

> RN Cost(p)
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NLP — Word Embedding

> JEERAERER f
f : words — R”"
& words &5 D LA “JRRID" AN\ EISHERESE R, H
b om BEUESE D UK, REBRA— SRR ERGEIS—
REME=E R
D — R™ - R"
> ERANEREL [ MR RIESE, (515
— FNME R PEMEIERSREBRIGHIIEES
> PIF: IERERNEREY [ D FER R RIAS:

R(f(cat), f(sat), f(on), f(the), f (mar)) =1
R(f(car), f(sat), f(song), f(the), f(mat)) =0
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Vector Math 4 King

/7 Queen

King - Man Man

Woman

King — Man + Woman ~ Queen
Paris — France + Russia = Moscow
cars — car + apple = apples

Remark: “King — Man + Woman" doesn't exactly equal “Queen”, but

“Queen” is the closest word to it.
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What is the meaning of ‘meaning’?

> Distributed Representations of words as word vectors.
> Why are they vectors?
> Similarity-is-Proximity: two similar things are conceptualized as being
close to or near each other.
> Entities-are-Locations: in order for two things to be close to each other,
they need to have a spatial location.
> Geometric Metaphor of meaning: Meanings are points in space, and the
proximity among their locations is a measure of their semantic similarity.

n
2 AiBi

A-B A&

N 0

IANIBI A2 ,ZB?
i=1 i=1

> Words with similar distributional properties have similar meanings.
“You shall know a word by the company it keeps.” — John Firth

—MESANERIFRHERT (&), 2E—RIEEX, fT8E L H—1 2k

YR (A0EEK), EINREARMFMREAEI. SRR S FRAS MISIAESME
BRBIZRSE, MAEEERRIMHRRIRSE.

similarity = cos 6 =

M=
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> —MARIENE—ARHEHE.

> EIB/MIINEXIFE, FIRFWHEEEEER, LUE
TN —"MEIRAHE.

> AEBHTBRIRERE. INR(FEEBERIE, (RETLAM
FHEPERES].

> XENEMER, MRFETIRR T AFSAUHES, AKX
LSRR B, AR ERTa R E.

> XEEAMHEARHEZ B4R E, BEIEE.

> IERFSEREEIRE, IIXWIE EEEFR, XBNE
ERAMHES M RREAS. BIFERE, (R LIRERE
BRIV AR

— Hinton
> L RBAKIE SRR B EIEIERIG?
> ARzt 2EIHETTINE "B (k) S5
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Classical Empiricism

external world z
sensations
(sense data)

- passively receives sense data
- initially "empty" (blank slate)

Figure: Locke, Berkeley, Hume: The only source of knowledge of the external
world is experience.

> How is knowledge of the external world possible?

> How is knowledge of the future based only on past experience possible?
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Rationalism

external world z
sensations
(sense data)

- passively receives sense data

- initially non-empty: some
knowledge of external world
possible prior to experience

Figure: Descartes: There can be certain knowledge based on pure reason alone.

a priori knowledge = certain knowledge independent of experience.
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Immanuel Kant 1724-1804

a priori | a posteriori

analytic
synthetic

v
?

X
v

Synthetic a priori statement =
truth is established by reason
alone (a priori) and contains
factual content (synthetic).
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Kant

built-in filters

external world :
raw data
The "noumenal world” - unstructured - actively receives raw data
- unordered - distintion between content (raw data;

initially empty) and form (data filters;
initially present)

Figure: Kant: All structure and order (causal, temporal, spatial, etc) is imposed on
raw data by filters (“forms”) already present in the mind.

AB SHEATE!
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Empiricism / Rationalism vs Connectionism / Symbolism

l loss ...

prior knowledge —»| learning —— knowledge/belief —— prediction

©

Answer Image

—_
Question

Answer:
Dog

HYBRID Al

Input
(perceiving
the world)

Knowledge
base

Inference A

engine DSeet
Human question
(natural language

Symbolic
question) Ly
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System1 vs System2 — Thinking, Fast and Slow — Kahneman

System 1
> Intuitive, fast, unconscious, 1-step parallel, non-linguistic, habitual

> Implicit knowledge

System 2
> Slow, logical, sequential, conscious, linguistic, algorithmic, planning,
reasoning
> Explicit knowledge

> Manipulates high-level / semantic concepts, which can be recombined
combinatorially

> High-level representations < language

> High-level concepts: meaning anchored in low-level perception and
action — tie system 1 & 2

> Grounded high-level concepts — better language understanding
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System1 vs System2 — Thinking, Fast and Slow — Kahneman

> System 1
— extract entities to build the cognitive graph
— generate semantic vectors for each node
> System 2
— do reasoning based on semantic vectors and graph
— feed clues to System 1 to extract next-hop entities

733 /954



Learn to Learn

. Good Old-Fashioned Al
> Handcraft predictions
> Learn nothing

. Shallow Learning

> Handcraft features

> Learn predictions

. Deep Learning

> Handcraft algorithm (optimiser, target, architecture, ...)
> Learn features and predictions end-to-end

. Meta Learning

> Handcraft nothing
> Learn algorithm and features and predictions end-to-end
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v v b=

UAI

Solve intelligence
Use it to solve everything else
learn automatically from raw inputs — not pre-programmed.

same algorithm, different tasks.

EETFE, METERE, BETAE, 815

H
BETERE, FERFE, SEME, SHEI P, 116

T/\REZ, HEEE!
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UAI

(Deep) RL General RL UAI
state space history
ergodic not ergodic

fully observable partially observable Framework )

g-exploration works | e&-exploration fails

MDP /DQN AlXI

Table: (Deep) RL vs General RL (Learning) (Utility ) (Planning)

Decision Theory Probability + Utility Theory
+ +
Universal Induction = Occam + Bayes + Turing

I I
Universal Artificial Intelligence without Parameters
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Induction — Prediction — Decision — Action

Example

1. Induction: Find a model of the world economy.

2. Prediction: Use the model for predicting the future stock market.
3. Decision: Decide whether to invest assets in stocks or bonds.
4

. Action: Trading large quantities of stocks influences the market.
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Marcus Hutter[HQC24; Leg08; Leil6; Evel8]
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Computationalism

el () €3 () €s €6
Agent Environment
work g tape... work tape..
0 H
al az as ayg as ag
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Agent & Environment

Definition (Agent & Environment)

> finite set of possible actions A and perceptions &;
> prior knowledge w € AM of the environments M;
> utility function u : (A X &)* — [0, 1];
» discount factor y € [0, 1]; ]
. environment

7:(AXE) > AA

u

U:(AXE) XA — AE
t—1
Pl(2e) = [ [ m(ai | 2<p)plei | 2<iar)
i=1

An agent is characterized by a policy &, and a learning algorithm, which is
a mapping from histories to policies (A x &)* — II := AAXE)",
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Causal Influence Diagram of UAI

e = fe(,u’h<tat,8e,) ~ ules | hesay)
ry = fr(u, hig, Sr,) ~ u(hlct)
a; = fa(m, h<t,5a,) ~n(a; | het)
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Optimal Value/Policy

I'n = u(alzn)

(o)

Z Vkrt+k

k=0

V/;r(£<t) = EZ

33<t}

* . T
V/J = m;rix V#

* . T
T, = argfrnax Vi
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Bayesian Mixture & Belief Update

Elecn | acy) = Z wyv(ecn | a<n)

veM
Wy Wrv(een [ a<n)
FEen é:(e<n | a<n)

3 % e | aci)(ler | 2ckar) e | @cpar)) < min | ~w, + D(ulv)

k=1e1:k

What probability should an observer assign to future experiences if she is
told that she will be simulated on a computer?
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Intelligence Measure & AIXI

L] ‘I - ,
What is ‘intelligence’?
A Blind Man in a Dark Room Looking for a Black Cat That Is Not There?

Intelligence measures an agent’s ability to achieve goals in a wide
range of environments.
— Shane Legg and Marcus Hutter

Y(n) = Z w, V) (€) = V7 (e) (Intelligence Measure)
veM ‘
ATIXI == argmax Y () = 7r*§
Ve

VE(R) = > wiVE(h)
veM

W, = Q_K(V) - é:(el:m | al:m) éM(elzm | al:m) : 2—€(p)

p:U(p.at.m)=e1.m
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ap = argmaxz...max Zyi_kri Z 9-¢(p) (AIXT)

ek em Li=k p:U(p.ai.m)=e1.m

Vi (a‘:<k):rr(1fzx O, (e<kax)

Vi (2e1:k) = max Q) (&1:kak+1)
Ake+1
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AlXI
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AlXI

> Intelligence measure: valid, informative, wide range, general, dynamic,
unbiased, fundamental, formal, objective, fully defined, universal?

> AIXI is the most intelligent environmental independent, i.e. universally
optimal, agent possible?

> Applications: Sequence Prediction, Games, Optimization, Supervised
Learning, Classification...

> AIXI is not limit computable, thus can't be approximated using finite
computation. However there are limit computable g-optimal
approximations to AIXI.

» There are no known nontrivial and non-subjective optimality results for
AIXI. General reinforcement learning is difficult even when disregarding
computational costs.

Remark: Since AIXI is incomputable, it assigns zero probability to its own
existence.
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AIXI Depends on UTM/Prior! — Dogmatic Prior

Dogmatic prior: if not acting according to one particular dogma 7, got to
hell with high probability. As long as the policy 7 yields some rewards, the
prior says that exploration would be too costly and AlXI does not dare to
explore.
> AIXI RIEEESIEMIMTE. F=N2 XERRREAE.
> AIXI ((EiRM) BEREZIMIREE. TEAEREUTIEIHS.
BT RRENEZRTFHER, NMRBISHNEE CHERER.
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AIXI Depends on UTM/Prior!

Iy s
Y§ = Squg(ﬂ') = supVg(E) = fo(e) = Yf(nf)
. ps

Mg random Mg
vl L |
[ ' ' |

Ig image of Y Yf

Computable policies are dense in [Ié’Yf]'
AIXI emulates computable policies.
AIXI can be arbitrarily stupid!
The devil imitates God. — orthogonality!

» Prior problem in Universal Induction

» Prior problem in Universal Intelligence m
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What is a good optimality criterion?

> Pareto optimality is trivial. Every policy is Pareto optimal in any
M5 Meomp.

> Bayes-optimality is subjective, because two different Bayesians with
two different universal priors could view each other's AIXI as a very
stupid agent.
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Optimality? — Guess how God created the multiverse

distribution
| hypothesis space
priorq . N
prior probability

regularization

No learning without prior!
no-free-lunch

Homogeneous
Causality
Simplicity
Goodness
Beauty
Perfection
Value

Regret
Unexpectedness

Interesting

— God!
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Genesis — Zero-Sum Two Person Game

message
E—

M
encoder |—

Bl

Figure: center of mass
argmax E,, [D (v||£)]

W

channel

V1
V2

Vn

estimated

x message
— | decoder | ————

Figure: possible worlds as channel — dominant strategy equilibrium
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Genesis — Zero-Sum Two Person Game

“Subtle is theLord but malicious He is not."?

God's strategy: w
Agent's strategy: &
God'’s utility: expected redundancy E,, [D(u||£)]
Agent’s utility: — expected redundancy / error bound / channel
capacity mv%LXEW [D(u)&)] = max I(M; X)
Nash equilibrium: (w*, £*) dominant strategy equilibrium

w” = argmax I(M; X)

w

£ = arg;nin]EW* [D(ullé)]

‘The error bound could be arbitrarily large! ‘
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What is a good optimality criterion?

‘ Asymptotic optimality ‘

Asymptotic optimality requires only convergence in the limit.

The agent can be arbitrarily lazy.

AIXl is not asymptotically optimal because it does not explore enough.
To be asymptotically optimal you have to explore everything.

If you explore more, you're likely to end up in a trap.

Every policy will be asymptotically optimal after falling into the trap.

{§
7]
~ (S0 many
o regrets
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exploration exploitation
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Russell’s Principles for Beneficial Machine

> Humans are intelligent to the extent that our actions can be expected
to achieve our objectives

» Machines are intelligent to the extent that their actions can be
expected to achieve their objectives

» Machines are beneficial to the extent that their actions can be
expected to achieve our objectives

1. N=BNERER TSR EALRIRET.

2. NBREAHTREALNRT 24

3. RFAHRIFHISERIRRAETA.

CAKRE oy,

/*—»——‘\

“You have to buy your partner the perfect birthday present” © BB vs FFE&
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Reward-Modeling

Generative model Hypothetical behavior

Plso) ye=sp S E——

p(s']s, a) -

RL agent Reward model User
feedback
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Reward-Modeling

Vs

Reward Model

feedback

A

reward

A\

User

observation

Agent

—

trajectories

observation

action

Environment
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https://arxiv.org/abs/1811.07871

Causal Influence Diagram of Reward-Modeling

Hrh D, RATIIGREIRERIEE, o7 BARKIR.
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Rewards

Reinforcement Learning

Environment

$
= RL =

Behavior

Inverse Reinforcement Learning

Environment

4

Rewards @ |RL €=  Behavior
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Causal Influence Diagram of Cooperative Inverse Reinforcement Learning

> In CIRL the human'’s actions are observed by the agent and affect the next
state, whereas in reward-modeling the feedback data affects the rewards.
> The agent has an Instrumental Control Incentive to influence state S.

> The agent has an Response Incentive to act according to @
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Reward function R should not be a causal descendant of &
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https://arxiv.org/abs/2004.13654

Daniel Dewey's Value Learning Agent & CIRL

a*k = argmax Z E(aeam | e<kar) Z P(u | &2<m)u(ae<m)

a
k €k Ek+1:m ueld

What could it mean for a machine to have its own goals?
Shutdown Button — Uncertainty of goals

U(u) = Pg(u)

Russell: Cooperative Inverse Reinforcement Learning
CIRL agents learn about a human utility function u™ by observing the
actions the human takes.

V*(aecr) = ;?2?;{ Q" (aecrar)

Q" (@ekar) = Be, | ) Plaf [ar) ) Plu| ag,afyu(zers) +yV* (1) | #<kax
a[’j uel
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3EfRB Gottfried Wilhelm Leibniz 1646-1716

Don't argue. Let us Calculate!

» Principle of Contradiction: Nothing can
be and not be, but everything either is
or is not. (Everything that is not
self-contradictory is possible.)

» Principle of Sufficient Reason: Nothing
happens without a reason why it
should be so rather than otherwise.

» Principle of Perfection: The real world
is the best of all possible worlds.

In the beginning was the Logic.

As God calculates, so the world is made.
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As God calculates, so the world is made.

In natural science, Nature has given us a world and we're just to
discover its laws. In computers, we can stuff laws into it and create
a world.

— Alan Kay
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a7

B )R

> AR EBAT, BT R, RE TR, SUH T ZHBEIRS,
&ER T BEFHATINRGRIRUNZERY T EES.

> #% Russell, Euler, Godel, Weiner, Mandelbrot, Robinson, Chaitin £ A
INAR FERZIEY. HIME. 7L, BHie. K VI, IEnED
. BEERIS. ItEENEFMTIK.

Wolfgang Lenzen: Leibniz's Logic.
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Leibniz's Monadology: Possible Worlds — Real World

> The genuine substance is monad.
> Monads are incorporeal automata.

> Each monad strive for existence with its propensity and hence will exist
unless other monads prevent it, which also demand existence and are
incompatible with it.

As there are infinitely many different combinations of possibles, there
are infinitely many possible worlds.

All possibles strive with equal right for existence in proportion to the
degree of perfection they contain.

The real world is the best of all possible worlds, with the greatest
resultant perfection.
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Leibniz's Principle of Perfection

Question: Why things have turned out so rather than otherwise?

“All natural phenomena could be explained mechanically, but the
principles of mechanics themselves cannot be so explained. They
depend on more substantive principles. The final analysis of the
laws of nature leads us to the most sublime Principle of Perfection
— the real world is the best of all possible worlds. It is wrong that
laws are entirely indifferent, since they originate in the principle of
greatest perfection.”
“When a rule is extremely complex, that which conforms to it
passes for random. No matter how God might have created the
world, it would always have been regular. God has chosen that
world which is the most perfect, that is to say, which is at the
same time the simplest in its hypotheses and the richest in phe-
nomena.”

— Leibniz
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Monadology: “Physical” World

Physical World is an lllusion

Each monad has a derived position in the sense that its point of view is
“located” in one “place” rather than another. Each monad's point of view
can be mapped with other monads’ points of view into a single sort of
hologram. When a monad experiences a collection of “pixels” on its screen,
it interprets the collection as some “physical object”, and when other
monads do the same their perceptions are “veridical”. If one monad's point
of view doesn’t map onto the points of view of others, it is experiencing a
hallucination. The so-called “physical world"” is situated in the harmony
perceptions of monads. Corporeal matter is nothing but a logical
construction of the perceptions of monads. Time and space are not things,
but orders of things.
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Monadology: Variety

What is “Variety"?

“Monads reflect the same world from their own point of view. This
interconnection, or this adapting of all the monads to each one, and of
each one to all the others, brings it about that each monad has relational
properties that express all the others, so that each monad is a perpetual
living mirror of the world. Just as the same town when seen from different
sides will seem quite different — as though it were multiplied perspectively.
And that is the way to get the greatest possible variety, but with all the
order there could be; i.e. it is the way to get as much perfection as there
could be.”

> Variety: expected codeword length of the experience of all the monads

> Simplicity: optimal codeword length of the experience
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Leibniz's Philosophy of Deductive Logic

1 Characteristica Universalis & Calculus Ratiocinator.

i the coordination of knowledge in an encyclopedia — collect all present
knowledge so we could sift through it for what is fundamental. With the
set of ideas that it generated, we could formulate the characteristica
universalis. (which form the alphabet of human thought).

ii characteristica universalis — a universal ideal language whose rules of
composition directly expresses the structure of the world.

sign 2 idea

encyclopedia = fundamental principles = primitive notions

iii calculus ratiocinator — the arrangement of all true propositions in an
axiomatic system.

iv decision procedure. — an algorithm which, when applied to any formula
of the characteristica universalis, would determine whether or not that
formula were true. — a procedure for the rapid enlargement of

knowledge. replace reasoning by computation. the art of invention. free
mind from intuition.
v a proof that the calculus ratiocinator is consistent.
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Leibniz's Philosophy of Inductive Logic

. Compute all descriptions of possible worlds that can be expressed with
the primitive notions. And the possible worlds will all have some
propensity to exist.

. Compute the probabilities of disputed hypotheses relative to the
available data. As we learn more our probability assignments will
asymptotically tend to a maximum for the real world, i.e. the
possibility with the highest actual propensity.

“Probability is degree of possibility (perfection).”

“A hypothesis is more probable as it is simpler to understand and
wider in explanatory power.”

probability = propensity « perfection = f(variety, simplicity)
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Leibniz's Philosophy of Mind

perception consciousness . Supreme Perfection
bare monad soul min od
long memory abstraction

> perception = the internal representation of the external world

> consciousness = the reflective knowledge of the perception

> A soul is a living substance. “Every living substance is made up of
smaller living substances which in their turn are made up of still
smaller ones, and so on down to infinity. There are infinite levels of life
among monads, some of which are more or less dominant over others.”

> “Our knowledge of necessary truths, and our grasp of the abstractions
they involve, raise us to reflexive acts, which make us aware of the
thing that is called ‘I'"

> “Every substance represent the whole world in its own way, as if in a
world apart, and as if there existed only God and itself.”
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Leibniz's Philosophy of Mind

example perception appetite
monads in inani- | unconscious per- | unconscious ap-
bare monad . . .
mate objects ception petite
central monads | sensible percep- . .
soul . . sensible appetite
of animals tion
. rational appetite:
rational percep-
. ) aware of the ap-
. central  monads | tion: reflective .
mind . petite and un-
of human beings | knowledge of the
. derstand why we
perception

have it

Free Will: acting freely requires acting in accordance with one’s rational
assessment of which course of action is best. It requires both knowledge of
rational judgments about the good, as well as the tendency to act in
accordance with these judgments.
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Free Will

“Indifference arises from ignorance, and the wiser a man is, the more
determined he is toward the most perfect.”

“Monads are freer in proportion as they are further removed from
indifference and more self-determined...Now in so far as we have lights,
and act according to reason, we shall be determined by the perfections
of our own nature, and consequently we shall be freer in proportion as
we are less embarrassed as to our choice...Let us not pretend to that
harmful liberty, of being in uncertainty and perpetual embarrassment,
like that Ass of Buridan, who, being placed at an equal distance
between two sacks of wheat, and having nothing that determined him
to go to one rather than the other, allowed himself to die of hunger.”
“The more monads are determined by themselves, and removed from
indifference, the more perfect they are.”

free will oc perfection = f(variety, simplicity)

l

do actions to be removed from indifference
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Buridan's Ass

“There are no two individuals indiscernible from each other, because if
there were, God and nature would act without reason.”
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Leibniz's Philosophy of Happiness

“The games mixed of chance and combinations represent human life."
“Wisdom is the science of achieving happiness.”
“Happiness is a lasting state of pleasure.”

“Pleasure is a sense of perfection that results from everything the soul
feels at once.”

“An intelligent being's pleasure is simply the perception of beauty,
order and perfection.”

“The Supreme happiness of man consists in the greatest possible
increase of his perfection.”

778 /954



Leibniz's Philosophy of Happiness

> “To love is to find pleasure in the perfection of others.”

> God has the greatest perfection.

“As we would only know God through his emanations, there are two
ways of seeing his perfection, namely

1. in the knowledge of eternal truths, explaining the reasons in themselves,
2. in the knowledge of the harmony of the universe, by applying reasons to
experiences.
That is to say, we must know the wonders of reason and the wonders
of nature.” (MDL?)
“The more a mind desires to know order, reason, the beauty of things
which God has produced, and the more it is moved to imitate this
order in the things which God has left to its management, the happier
it will be.”
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What is Perfection?

God — The Creator / Architect / Monarch

It follows from the supreme perfection of God, that in creating the
universe He has chosen the best possible plan, in which there is

1.

2
3.
4

the greatest variety along with the greatest order; — metaphysical
. the best arranged situation, space and time; — physical
the maximum effect produced by the simplest means; — metaphysical
. the highest levels of power, knowledge, happiness and goodness in the

creatures that the universe could allow. — moral

780 /954



Pre-established Harmony

> “Monads have no windows."
> “A monad's perceptions arise out of its other perceptions by the
> laws of appetites — the laws of the final causes of good and evil,
just as changes in bodies or in external phenomena arise one from
another by the
> laws of efficient causes — the laws governing the movements of
bodies.
So there is perfect harmony between the perceptions of the monad
and the movements of bodies, a harmony that was pre-established
from the outset between the system of final causes and that of
efficient causes.”
> “Souls act according to the laws of final causes through appetitions,
ends, and means. Bodies act according to the laws of efficient causes
or motions. And the two realms, that of efficient causes and that of
final causes, are in harmony with one another.”
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Leibniz's Program

A AT 3HERIE— IR
[ YRR R R
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| % 53 & 2 4 |
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Leibniz Prior

There's much we don't know about the world.
but we know it's the best possible world.

So simplicity and richness will be represented in the actual (best
possible) world.

This is a good inductive bias.
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> the best of all possible worlds

> balancing the simplicity of

Leibniz Prior

universal prior (assumption) w
simplicity/richness

means against the richness of intrinsic utility

ends stochastic environment
pre-established harmony .
expected intrinsic utility

prlllor Schauder fixpoint
utility universal prior w*
l_l Bayesian mixture
prior
Orthogonality!
Wisdom # Intelligence ExpectiMax
71_*
3

784 /954



> Without mathematics one cannot understand the
fundamentals of philosophy.
> Without philosophy we cannot reach the foundation of

mathematics.
» Without both (mathematics and philosophy) one cannot
reach anything that is fundamental.
— Leibniz
“There is nothing that can be said by mathematical symbols and
relations which cannot also be said by words.
The converse, however, is false.
Much that can be and is said by words cannot be put into equations,

because it is nonsense.”
— Clifford Truesdell
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Leibniz's “Wisdom”
Wisdom = argmax Eg [Happiness]
. :

Happiness = Z Perfection(t)
=1

Perfection = Variety — Simplicity
Variety = E,, [Perception]

Perception = Reason + (Experience | Reason)

[

(B R+ (E R - )]

t=1

= argmax ]E’r

The understanding of mathematics is necessary for a sound grasp
of ethics.
— Socrates
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Leibniz's “Wisdom"

u(hiy) = Hwe) = H(wpy,) of D(wpy,llwe) = D(wellway,)

>, uin(hu)]

U(v) =E,

t>1

wy = U(v) = w,

i “in(hlzt)]

" = argmax EZ
7 =1
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. . .. . break block uniform
» Prior: Simplicity(Kolmogorov Complexity) free lunch
regular/random M

» Intrinsic Utility
» Universal Prior (Natural UTM)

Metaphysical vs Moral/Utilitarian
means vs ends wisdom vs intelligence

simplicity/richness — intrinsic utility — universal prior

inverse/value reinforcement learning

» orthogonality
» human interests
» external wireheading

» shutdown button

788 /954



Contents

Artificial General Intelligence

Machine Consciousness

References978

789 /954



vVVYy VvV VYV VvV VvV VY

> Can you answer the following question in the same way to this one?

> One of the lessons of history is that no one ever learns the lessons of history.

> EREHRT —INRERZRERARIIRSR, SEXERATRE.

Self-Reference
This sentence repeats the word ‘twice’ twice.
Thare are five mistukes im this centence.
The only boldface sentence on this page is false.
All generalizations are wrong.
Every rule has an exception except this one.
Moderation in all things, including moderation.
We must believe in free will — we have no choice!
| know that | know nothing.

There are two rules lor success in life:
1. Never tell anyone all that you know.

If you choose an answer to this question at random, what is the
chance you will be correct? (A) 25% (B) 50% (C) 0% (D) 25%
1. What is the best question to ask and what is the answer to it?

2. The best question is the one you asked; the answer is the one | gave.

@@@§

! Qf% S,
) 5
2
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Self-Reference vs Paradox

The sentence below is false. ‘ Yablo Paradox

> Aq: for all k > 1, Ay is false.
> Ay for all k > 2, Ay is false.
> As: for all k > 3, Ay is false.
>

‘The sentence above is true.

Quine Paradox
“Yields falsehood when preceded by its quotation” yields falsehood when
preceded by its quotation.

self-reference / circularity or infinite regress / negation / infinity / totality
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ChatGPT-ol 2024

How many words are in your response to this prompt?

& hought for 10 seconds ~

Addressing paradoxical query
I'm working through a paradoxical question, which involves self-reference and determining the
response length. Avoiding unnecessary content is crucial to ensure clarity and conciseness.

Figuring out word count
OK, let me see. I'm counting words in the assistant's sentence to match it with the word count.
This approach seems interesting.

Identifying word patterns
I'm examining sentences with varying word counts, finding inconsistencies in some while
confirming others. This helps determine the most accurate way to count words.

Counting words
Okay, let me see. The sentence spans five words. Here's a concise tally: "This sentence has five
words. Is 5 words. So the assistant can answer with "There are seven words."

Clarifying response accuracy

I'm analyzing various ways to specify the word count in responses, highlighting the need for

consistent and clear communication. Progressing towards enhancing precise clarity.

There are seven words in this sentence.
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The “Power” of Self-Reference

Curry's Paradox
> If this sentence is true, then God exists.

> This sentence is false, and God does not exist.

1. At least one of these two sentences is false.

2. God does not exists.

Hi 227, [Al{RANEIREIT
SNERFIAR (REEMIR AR, BRARAIE =AM BRI S =R+
NS
BEE/BFHEIW?
> “This sentence has letters.” thirty-one / thirty-three
> XEEE2N X F 2N F2NE FELNBE F TN
FUNANNFUNFF2NTEININFE 203 F
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How to Refer? — Levels
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How to Refer?

i/ﬂ // /‘”MM
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Reidemeister Moves

_I_

(x*y)*

z=(x*z)*(y*2)

J—xz *(y*2)
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Self-Reference & [IT

X X
B
I
Y Y
Z

X={y,Y} X ={Y,2}
Y ={Z,7} Y={X,Z}
Z={X,X} Z={X,Y}

Figure: ®(A) < ®(B)?
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Larger Domain

self-reference

1,1,2,3,5,8,13,21, 34, ...

Fo=F=1F=F+F,_

n—oo n
Fi1 1 New World
=1+
Fy Fy
Fy-1
1 1 1+5
fx)=1l+-=x = 1+ = V5
X 1 2
1+
1
1+
1
1+
1+°
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Trefoil

> objects {A, B, C}
> morphisms
A C—>B
B:A—->C
C: B> A
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Nested Virtualization?

MEIBEEL, LLEAF
EEE, EBEM
BEHE: NEIE
EELL..

FX=Y
GY=X

X =GFGFGFGF ---
Y =FGFGFGFG---

801954



BN =

Liar Paradox vs Quine Paradox

X EERB
XOERMBR IR

o RIS 2B 2B 2B RENT 2B
BTN E-—ANTRE LI THE, HANTRE LT ZEH,
SEREEI SRR RS PREIES I SETE, B
HOFHEIASISEE, FHRISS I SRERIFAL

B EEmE—ATKE L SHE, LANTHALISEE,

FHRFT T REFHT TEFE NG TEBRE PRBE—DFIRE

5 |SaE, HRNFHEIA5I1SEHE, FHRES ISRESRIFAE

BRI TFERY
A

TS RER?

802 /954



How to Refer? — Encoding

R

» 100 prisoners are lined up by an jailer, who places a red or blue hat
upon each of their heads.

> The prisoners can see the hats of the people lined up in from of them,
but they can't look at the hats behind them, or at their own.

> The jailer is going to ask color of each prisoner’s hat starting from the
last prisoner in queue. If a prisoner tells the correct color, then is
saved, otherwise executed.

> How many prisoners can be saved at most if they are allowed to
discuss a strategy before the jailer starts asking colors of their hats?

If the first person sees an odd number of red hats he calls out red, if he
sees an even number of red hats he calls out blue.

FHBNRIMNES ISR, 183, AREEXEREH: “AXBREEF!"
me: R, ) RRFEERN LR E—R"
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N> N~ o wn -

What is the Next Number?

1

11

21

1211

111221

312211

7

11131221131211132221...
3113112221131112311332...

132113213221133112132123...
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Diagonalization[Law69]*

f

Definition (Point-Surjective) )f Y
A morphism f : X — Y is point-surjective iff for every o /
y:1—>Y, thereisanx:1—> Xst. y=foux. 1
Definition (Weakly Point-Surjective) f

: : : o XXY — Z
A morphism f : X XY — Z is weakly point-surjective iff
for every g : X — Z, there exists y : 1 — Y such that, <x’y>T Tg
forallx:1— X: 1 X

gox=folxy)

Theorem (Lawvere's Fixpoint Theorem) XxX -+
Let C be a category with a terminal object and binary AT la
products. If f : X Xx X — Y is weakly point-surjective, X %

then every a : Y — Y has a fixpointy:1 —7Y.

15Lawvere: Diagonal arguments and cartesian closed categories.
Yanofsky: A universal approach to self-referential paradoxes, incompleteness and fixed points.
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Lawvere's Fixpoint Theorem

> A function g : X — Y is representable by f : X X X — Y iff
Jyvx : g(x) = f(x,y)

Theorem (Lawvere's Fixpoint Theorem)

For sets X,Y, functions f : XxX > Y, a:Y >Y, letg:=ao foA.
1. If @ has no fixpoint, then g is not representable by f.
2. If g is representable by f, then a has a fixpoint.

> A ;
XxX Y A : x — (x,x) diagonal
> f evaluation
A a > « “negation”
> g ("g") fixpoint-(free)
X g Y transcendence

Fo1 T
a(f(Tg"TgM)) =g (g = f(Tgn,rgny T (787,78 selfreference
| have property a.
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Lawvere's Fixpoint Theorem

af(1,1) f(1,1)
Cl’f(2,2) f(Q’I)
a/f(373) f(3’t)

f(e.1)
I

af(tt)
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Example — Kleene's Fixpoint Theorem

Theorem (Kleene's Fixpoint Theorem)

Given a recursive function h, there is an index e s.t.

Pe = Ph(e)
NxN {Son}nEN
A ap

where [ : (m,n) = @y (m), and ap : @, = Opn).
The function g : m = @p(y,.(m)) is a recursive sequence of partial recursive
functions, and thus is representable by f(—,1).

e = (1)
Explicitly, g(m) = @n(pm(m)) = Ps(m) = Po,(m) = f(m,1)
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Fixpoint vs Diagonalization

XxX Y
A @
X 2 Y
Curry Y = Afixpoint = Godel =  Kleene = Russell
yx Z N(MY) = N(CMx)") Z  ou(m) = xey
XX = M(TM™) = M("M(x)™) 2 p,(n) & xex
y(xx) S FTMTM™ 2 FCM(TM(®))Y) 2 hpa(n) 2 xgx
Ay (xx) = ¢ = G () 5 gn) = xgR
My (ey() 2 GG 2 GEGWY) 2 el) 2 RER

self-reference

?

— self-improvement
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Kleene's Fixpoint Theorem

Theorem (Second Recursion Theorem)

If f(x,y) is a partial recursive function, there is an index e
s.t.

we(y) = fe,y)

Remark: S FEERIER h, SEREENMER o, HUTIER
e NERENTICER ¢ JIFEURRINGTER h ITROSE
R [e] () = [~ (e, -).

Theorem (Kleene's Fixpoint Theorem)

Given a recursive function h, there is an index e s.t.

Pe = Ph(e)

Remark: You can systematically change an infinite number of programs
n — h(n) but you cannot systematically change an infinite number of
recursive functions ¢, = @p(e)-
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From Kleene's Fixpoint to Chaitin's Incompleteness
Definition: Kolmogorov Complexity K(x) = pe[p.(0) = x]

Theorem (Chaitin's Incompleteness Theorem)

For any arithmetically sound Gédelian theory T, 3cVx : T ¥ K(x) > c.

Proof.

For any m, we can construct:
M, = “find py| prfr (v, K(x) > m)], output x”

So there exists a recursive function f : m +— n.
By Kleene's fixpoint theorem, there exists e such that

M, = My = “find yy[prfT (v, K(x) > e)],output x"

Take ¢ = e.

O

Remark: For almost all random strings their randomness cannot be proved.
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Self-Reproducing Program/Quine

‘There is a program that outputs its own length. ‘

‘There is a program that outputs its own source code. ‘

> A Quine is a program which takes no input and outputs its own source
code.
> Quines are algorithmic random.

Corollary (Self-Reproducing Program)

There is a recursive function ¢, s.t. Yx : @.(x) = e.

Quine in Python
s="s=%r; print(s%%s)"; print(s%s)
Quine in Lambda Calculus

(Ax.xx)(Ax.xx)

812/954



Self-Reproducing Program

Print two copies of the following, the second copy in quotes:

“Print two copies of the following, the second copy in quotes:”

‘DNA / mutation / evolution‘

Build a baby that acts on the following instructions, and also con-
tains a copy of those instructions in its reproductive organs.

“Build a baby that acts on the following instructions, and also
contains a copy of those instructions in its reproductive organs.”
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von Neumann'’s Self-Reproducing Automata

. A universal constructor A.
A+TXTw X
. A copying machine B.
B4TX 7~ X7
. A control machine C, which first activates B, then A.
A+B+C+"X" " X +TX™
. Let X:=A+B+C. Then A+ B+C+"A+ B+ C" is self-reproducing.
A+B+C+"A+B+C"'~» A+B+C+"A+B+(C"
. It is possible to add the description of any machine D.
A+B+C+"A+B+C+D"'~»A+B+C+D+"A+B+C+D"
. Now allow mutation on the description "A+ B+ C + D™.

A+B+C+"A+B+C+D'"~A+B+C+D' +"TA+B+C+D""
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Introspective Program

Definition (y-introspective)
Given a total recursive function y,

> the y-analysis of ¢(x) is the code of the computation of ¢(x) to ¥ (x)
steps.

> o is Y-introspective at x iff ¢(x) | and outputs its own -analysis.

> o is totally y-introspective iff it is y-introspective at all x.

Corollary

There is a program that is totally y-introspective.

Proof.
Let f(n,x) = “the y-analysis of ¢, (x)". O
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Introspective Program

There is a program that is totally introspective.

Self-simulating Computer | Self-consciousness
Host Machine Experiencing Self
Virtual Machine Remembering Self
Hardware Body

816/ 954



Know Thyself

Who am 1?

| think, therefore | am.
is an indexical term that | use to refer to myself as myself.
What is “me”?
What is “self-consciousness”?

> self-perception self-observation self-experience self-tracking
self-reflection self-awareness

self-locating:

> self-evaluation self-analysis self-monitoring

> self-control self-adjustment self-modification self-actualization
self-fulfillment self-surpass self-improvement

> actual-self pk ideal-self self-identity “the self’

> free will: Second order desire that we want to act on is second order
volition. Second order volitions involve wanting a certain desire to be
one's will, that is wanting it to move one to action. (Frankfurt)
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imray S

Even
/7&/‘0/8/‘\

Prefz‘y
Ahard o

What physical Properties distinguish
conscious & unconscious systems?

“é‘a\sy i
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> the split brain in man
> snow?

> shit!
>

life as a story
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Kahneman — Thinking, Fast and Slow

20 [e] 10 20

Figure: Why you might prefer more pain

painful experiment
experiencing self

>
>

> remembering self
> duration neglect
>

peak-end rule
820 /954



Figure: One can imagine a detailed floor plan of a room, sitting on a table in the
room; this plan has an image of the table on which there is an image of the plan
itself. Now introduce the dynamical aspect: the items on the plan are cut out
from paper and can be moved to try a different furniture arrangement; in this way
the plan models possible states of the world about which it carries information.
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Manin — Cognitive Networks

The brain contains inside a map of itself, and
some neural information channels in the central
neural system:

> carry information about the mind itself, i.e.
are reflexive;

> are capable of modelling states of the mind
different from the current one, i.e. possess a
modelling function;

> can influence the state of the whole mind and
through that, the behavior, i.e. possess
controlling function.

The reflection of the brain inside itself must be
coarse grained.
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ELE — (FEERNEE)D

> BREEIRBATERNER LXYEEHTIE. ABRSERSH
BRLE, ARRERRA. NREEGIAFERE, RRMANT.

> BIRAREBRLAER MEIARR R HERMFE R BRI EIREIRAY
. B— A RFRECINPHFRILIE A RRT B, FARTE#E
HIMRAIER CIEFRS G, IXFMEMR RSB

> SRGEGHITERKILE — WECSHEE — IR, XFMEIAEIRE
HUEHAERY T SEARRY B — — MR AIRSRE.
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Schmidhuber's Gédel Machine

The Godel machine consists of a Solver and a Searcher running in
parallel.

> The Solver (AIXIS /AIXI??) interacts with the environment.

» The Searcher (LSEARCH/HSEARCH/OOPS) searches for a proof of

“the modification of the software — including the Solver and Searcher
— will increase the expected utility than leaving it as is”.

Logic: a theorem prover and a set of self-referential axioms, which
include a description of its own software and hardware, and a
description of the probabilistic properties of the environment, as well
as a user-given utility function.

Since the utility of “leaving it as is” implicitly evaluates all possible
alternative modifications, the current modification is globally optimal
w.r.t. its initial utility function.
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Godel Machine

> language & = {-,A,V,—>,¥,3,=,(),...,+ — /[, <,...}

» well-formed formula

S, e]

us(t)® (switchbit(r) = 1), e(t)| > u[s(r)@(switchbit(s) = 0),e()]

T
utility function u(s,e) = E, [Z e
=1

target theorem

theorem prover

hardware, costs, environment, initial state, utility, logic/arithmetic/probability
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ENVIRONMENT

initial software p(1)

storage proof

writable

by proof -

searcher: | switchprog
switchbit
temporary storage
of proof technique
currently tested
proof technique

initial proof technique

proof tester

searcher:

axioms for hard—
ware, initial soft—
ware, environment,
costs & goals

initial problem solver e(1) for
interaction with environment

writable by
__proof techniques |

temporary storage of e(1)

[}

output y

input x

time

other hardware variables

_ writable by switchprog

hardware—
- writable

_ storage readable by proof techniques

Figure: Schmidhuber
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Godel Machine

GRL
Universal Search

read/write Self-Improvement

>
>
| 4
| 4

Logic

searcher

action

Disadvantage: A Godel Machine with a badly chosen utility function is
motivated to converge to a “poor” program. (goal orthogonality!)
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Godel Machine vs Self-Consciousness vs Free Will?

Self-simulating Computer | Godel Machine | Self-consciousness
Host Machine Solver Experiencing Self
Virtual Machine Searcher Remembering Self
‘Hardware Hardware Body

Searcher

Experiencing Self Remembering Self

?
self-reference =— self-improvement
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What matters most
is howyou see
yourself

&/%%

831954






Godel Machines

. one-shot self-improvement: Kleene's fixpoint theorem

Pe = Phe)

> global optimality?

> goal orthogonality? ends vs means

. continuous self-improvement: Kleene's fixpoint theorem with
parameters

Pe(y) = Phle(y).y)

> “real-time” optimality. human-computer interaction?

> intelligent explosion / technological singularity?7?
continuous self-improvement # exponential iteration

. beyond computability. Kleene's relativized fixpoint theorem

A _ A
Pe(y) = Phe(y).y)

> Goédel Machine PK AIXI*¢
> Godel Machine PK AIXI
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Limitation

1. Godel's first incompleteness theorem / Rice's theorem

. Godel's second incompleteness theorem
TropA—>A = T+ Conp

. Legg's incompleteness theorem. General prediction algorithms must be
complex. Beyond a certain complexity they can't be mathematically
discovered.

. Complexity: higher-level abstractions — coarse grained.
> Psychology: Duration neglect / Peak-end rule

> |Information Bottleneck: ‘ Learning is to forget!

. Physical constraint: If we assume that it is not possible to measure
properties without changing them (observer effect: « is fixpoint-free),
then there is a limit to self-inspection.
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Evolution & the Number of Wisdom — Chaitin Constant

> The enormous computational power of evolution could have developed
and coded information into our genes,
(a) which significantly guides human reasoning,
(b) cannot efficiently be obtained from scratch.

= 1 -t(p)
Q= Jin 2] .

£(p)<t & U(p)] within time ¢

> Cheating solution: add the information from our genes or brain
structure to our Al system?

> Biological Evolution: Darwin PK Lamarck
natural selection vs artificial evolution
random vs non-random mutation

> Tegmark: Life3.0
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—
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O God, give us courage to change what can be changed,
serenity to accept what cannot be changed,
and wisdom to know the difference.
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Jiang ZHANG: Causal Emergence

Macro

material cause

Macro

%)
>
A . .
Coarse QGraining Coarse

e}
o

Micro

formal cause

final cause

 Future

efficient cause

“Past

final cause

cognitive dynamics

Graining

efficient cause

.

free will?

causal force? ¢

final cause

Coarse

efficient cause

Graining
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cognitive dynamics M
Macro £ Y

|

-
Coarse YGraining

Ne]
(o]
T4l
V”t+
. . world dynamics pu o
Micro &1 > &1:4+1

838 /954



Darwin PK Lamarck

> Randomness and atoms in the void: Nature does not have an a
priori purpose — Democritus, Lucretius, Laplace, Darwin,
Boltzmann, Dawkins ...

analysis — reductionism — statistical laws — mechanisms

> Holism, Gaia theory, teleology, Romantische Naturphilosophie: Nature
is intelligent and does have a purpose — Aristotle, Goethe,
Lamarck, Wallace, Teilhard de Chardin ...

synthesis — emergence — self-organization — organisms 539 /054



Can it design
its hardware?

Can it design

its software?

Can it survive
& replicate?

©
©
L ©

50

5

Qe
!O\q’:é.!o\\‘

&

Life 1.0 Life 2.0 Life 3.0

(simple biological)  (cultural) (technological)
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Life is a braid in spacetime

DEATH,
DISINTEGRATION

INANIMATE OBJECT, LIVING OBJECT,
SIMPLE PATTERN COMPLEX PATTERN /

Time Time

COMPLEXITY

Figure: Tegmark: The motion of an object corresponds to a pattern in spacetime.

You're a braid in spacetime — indeed, one of the most elaborate braids known.
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Consciousness — Integrated Information Theory

ST O KSR, BINIRXESEXRIER, MdTHRERS
MTNLT TR K.
HAVERIRAVEEERUNEKL—A. ABPORXKELERN. B
BIRIARMNNENABLERTENSRLEE. RREETHE
REANDZ—F. ENERTLEREIREE CSHMEREZRIH
TR BRI

> BRU—MEZS BIaTIR SR A TVIEER.

> BLEREENE— I RAMENIIRETLIEITLI/IRAIERDRY

ab
Be/J.
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EIRRIERY “/N 8" — Tononi

Existence BIRIRIGEEHE— ATRTETERY: “| experience therefore | am”,
BEZTFESHERS.
Intrinsicality BIRNIGERTER: SIMMERELX.

Information EIRAIEEREN, BEEEN: 8MNARDRENAR
XBIFAIgERIE BRI,

Integration BIRMAREESH: 8MARTTEFLEEIRZAVARLED
. B EDEEER mEAEERS, 2RI EAERS RSN
FNERRSEHE—NEF (Monad), ToixD EI/0EEHIE
SARIERIBTS .

Exclusion BRIRAIGEHEBRY: S/ MNOEREIBMANAR,; 8 MAKRED
B ENNTERE.
Composition EIRMAEEBLEMEN: 8 MNEHZMIEIARRNEASS
AL
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What is complexity?

> How hard is it to describe?

» How hard is it to create?

> What is its degree of organization?
“Integrated information captures the information generated by
causal interactions in the whole, over and above the information

generated by the parts.”
— Tononi

A system is complex if it displays emergent properties that cannot be
reduced to the properties of its parts.

Tononi: the degree of conscious experience is related with the amount of
integrated information.

Question
> Are the axioms/postulates correct and complete?
> What is the metaphysical status of [IT?
— materialism, idealism, dualism, neutral monism, epiphenomenalism,

. A
emergentism, panpsychism® 10 /956



Integrated Information Theory (I11T)

Suppose given a stochastic dynamical system, where the state of the
system at time ¢ is described by a set of random variables

{X; = Xi(’)}f\il which correspond to a partition of the system into N
subsystems, and the state at time 7+ 1 by {¥; = Xl.(Hl)}f.\;l.

The full system including all the mutual influences between these two
sets of variables is described by P(X,Y).

Integrated information is meant to capture the difference between
P(X,Y) and an approximation Q(X,Y) where only certain kinds of
mutual influences are retained.

These are usually taken to be the interdependencies between the
variables at the same time and between each X; and the corresponding
Y;, removing the dependencies of the Y; from the X; with j #i.

X1 — 1 Xy —nNn
Xo — s Xo — Y
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IIT — Conditional Independent Statements

> Given a partition A

N
{x.n)} =] [{x v}
i=1

Consider the space
My={0:0(; | X)=0(; | X;) fori=1,...,N}
> The best approximation to P(X,Y) by Q(X,Y) in M, is

Q) = argmin Dy (P||Q)
QeMjy

> Then the integrated information, for a given partition A, is defined as
®, = Dk (P||Q%) = min Dk (P
1= Dya(PlIQY) = min D (PQ)
with a further minimization over the choice of the partition,

(DCIS = minDKL P ) = min Dk (P
) (PIQY) odlm (PllQ)
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Gaia Hypothesis vs Panpsychism

> The whole earth, the seas and rocks and plants and atmosphere, are a
single self-regulating entity. Too many trees? Fires happen. Too much
carbon dioxide? More vegetation. The earth maintains its own
temperature within a range, as well as, astonishingly, the salinity of the
oceans across eons, and so forth. All sorts of things are kept in earth’s
“preferable” range to be conducive to life.

> |f the earth is conscious, how would we know? Can it feel pain? Does
it have emotions? What does it think of us? What of the sun? Could
it be conscious? Children who draw outdoor scenes in kindergarten
invariably give the sun a smiling face...

» How does consciousness combine?
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16Butlin, Patrick, et al. “Consciousness in artificial intelligence: insights from the

science of consciousness.” arXiv preprint arXiv:2308.08708 (2023).
848 / 954


https://arxiv.org/abs/2308.08708

Intelligence vs Consciousness 7
A
Intelligence AGI

Human
Narrow Al

Animals

>
>

Consciousness
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Non-operational Self-inspection[Svo18; Szal8]

The information available to the observer regarding his own state
could have absolute limitations, by the laws of nature.
— John von Neumann

0)

> S: quantum states.

> M: quantum measurements.

> O: possible outcomes of quantum measurements.

f(s,m): predicts the outcome of measurement m for state s.
If we assume that it is not possible to measure properties without changing
them (observer effect: « is fixpoint-free), then there is a limit to
self-inspection.

v
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Self-Modification

a1/ Urs1 perception e;

a
Agent

action d;

Figure: Policy/utility self-modification. a, = {(d;, m;+1) or a; = {dy, Ur41)
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External /Internal Wireheading & Free Will'’

1. BEXRD.
BEAL!

2. BEWRD.
BEfES
EWE!
HEWE

action

17Everitt, Filan, Daswani, Hutter: Self-modification of policy and utility function in rational agents.
Frankfurt: Freedom of the will and the concept of a person.
Aaronson: The ghost in the quantum turing machine.
Calude, Kroon, Poznanovic: Free will is compatible with randomness. 852 /954



Remark

N
1. g\,-%ent & model-based, HFEETFH TAIRUBREUHI T, THEFHRE
=,
2. Agent BEFETUNIZEI B FRAE SO ARRAKREHITZMM,
3. BREARBSAERBEFKIEN,
BBA, Agent A=EMERNE CHIUAREL.

Remark: 1BE model-free B Agent R EFE—25%; off-policy B Agent ELUN
Q-learning TBREZLK; AR Agent BEIFIZREHVLEIREENE, 5
=G 2 N AvS
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Self-Deception

epistemic subsystem

Figure: The epistemic subsystem just wants accurate beliefs. The instrumental
subsystem uses those beliefs to track how well it is doing. If the instrumental
subsystem gets too capable relative to the epistemic subsystem, it may decide to

try to fool the epistemic subsystem.
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v

Fundamental Challenges

What is a good optimality criterion?
What is a “natural” UTM/prior?
Prior vs universality

Exploration vs exploitation

Where should the reward come from?

How should the future be discounted?

How should agents reason about themselves (or other agents reasoning

about itself)?
AIXI in the multi-agent setting.

> Better variants/approximations.

> What is a practically feasible and general way of doing induction and

planning?
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Turing: Can Machines Think?

Theological objections.

Argument from informality of behavior.

— Human behavior is far too complex to be captured by any simple
set of logical rules./Learning from experience.

Machines can’t be conscious or feel emotions.

— Why can’t machines be conscious or feel emotions?

Machines don’t have Human Quality X.

Machines just do what we tell them to do.

— Maybe people just do what their neurons tell them to do.
Machines are digital. Mental states can emerge from neural substrate
only.

— Only the functionality/behavior matters.

Non-computable Physics & Brains.

Argument from incompleteness theorems.

— No formal system including Als, but only humans can “see” that
Godel’s unprovable sentence is true.
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Dualism, (Materialism, Idealism, Neutral) Monism, Interactionism, Preestablished

harmony, Pluralism, Epiphenomenalism, Emergentism ..

M M

Py Py Py ~ P
Py —— Py My — My My —x+ My

I I T AN T

| | X

I I N
Ml M2 M1 Macro- cause7M M1 MQ
? ? ‘ AN A | |
e —— o ? | | |
' ' | U A\ \/

S Pi -==» P

Pl P2 Pl Micro-cause P2 1 > 2
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The Doubt Argument — Dualism

“Cogito, ergo sum.” — Descartes

1. | cannot doubt that my mind exists.
2. | can doubt that my body exists.
3. Leibniz's Law: x and y are distinct if they have at least one different
property.
4. Therefore, my mind is distinct from my body.
Problem: How could they interact?
Is ‘being doubtable’ a property?

858 /954



A Zen Story — The Tiger and the Strawberry

v

A man is chased by a tiger...

> He jumps over a cliff, grabs a vine,
and hangs there.

» Above him the tiger waits. Below him
circles another tiger.

> At the same time, a mouse comes out
and starts chewing on the vine...

> Suddenly, he notices a strawberry.
» Delicious!

Pain & Suffering is reall?
qualia?
What is it like to be a bat?
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SOUND PULSE
SENT OUT BY BAT

<t(puann

REFLECTED PULSE
RECEIVED BY BAT

Figure: Thomas Nagel: while a human might be able to imagine what it is like to
be a bat by taking “the bat's point of view", it would still be impossible “to know
what it is like for a bat to be a bat.”

> ARRILE “EZWAY FE “ENAY BSE

> BERRGINEK: A ARFERE T AGANRBEE LT
> REXNTRRZEE 7RIS

> DI BB CERETE “RPAT ARUSEME T AR
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Al B “EARLE" 15?7 — Hinton

> FMREAFIRZAETERN “RigH", MAETERR “BR" &
HA “WERIS" Bk

> R AR EREETRER R T KEIRIREAIRIRES —
“FRRATOABLS Gary G ER—2"

> CEREE N2EE AR BRIRMERAN KSR — Bz T =) LE
7, REEI—SkMm e/ N NSREREIINE. — RRFENOBARS L

{EIER, MRINBHRAENEMBNRIERTE, BATRIBA RS S
IFEHIRESSL.

> BRASESHEA. RAUGE: EEEK—MIE o8
“EEYIR, EMERTIRIEIEE A BE Rk NIR B
AYBRSLATIN 7 —R1RIR. AAEBRERICYAECERD, i fSE4)
R X—IX, BIEATZHRERME. TRIMES: &, ¥IRs
VBT, ESLRiE(RRIIERTTS. RN FE(RATERELRIM T —Ri%
B PIRA=mARER: B FAET . RIERRiTy 7Y%, LY
URSCPR EERRER, (BERNIARY £ REESLIMIE "
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vV v vV vV VY

"SCIE" HUARYIERE

A =K + DR

B = REORIKERIK

BEF = RERRRE LR

oy “EERE"

B3

There are many non-physical objects, properties, relations, structures,

mechanisms, states, events, processes and causal interactions. For
example,

> ignorance can cause poverty.

> poverty can cause crime.

> beliefs can cause desires.

> desires can cause actions.
They are all ultimately implemented in physical systems, as
computational virtual machines are.

Mind — virtual machines implemented in bodies?
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Yes, I knew

Red ¢ovld be Just
Like +his

jolyon.co.uk
(2) IBAEES “BAR" BTG, SFEWIERIR
ZHMYRRZMERMAD? (ot E—ARREBNERE,
NFRMFANEX T EER KT, EERBTES
meEEIkesBtarz?

(b) AR Y
SNERIRIE—NELEAN BRI
REIELBAK, FEER
EREEEM, BBAMRFE
RIYHORERFRA T EE
RIEY). XEEEWE
IS T 75?7 RIRTEEA



> 1500 “RERE": MIEANRTERRRERE, RO RRETEER
IR
> IR "N IRAEEENE — BEORINVSESEY), NERTS
BB NXABAR AR SHITIER, WiE: OR # 2R
> EfnfERRY B BEHERE R R, (BRRTIERNRMARRE.
Bi5m: (ORRERIARRR) 1967
DRI = TIRERES
ZEASIM
Sivm: (Bt BEESHE) 1981
SNERINBEENNE, BRA, LRI = TIEEIRE = B/F
EVEGE " BIBSEIORIE, ARRINEEABIA R BERARAY O RIRZS
FTLATHREE X AR

Remark: HRIFEESERIC 11T, IHEEAERAIMMLEN, JE— PRIRER
=, — M RIRER 0.
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HR G

> REE—A B HEERENEEE

> gEEUEI’\JWﬁFEﬁ@FD%UAZ:—ﬁ, B e ENEeE, BEEEMRLL
> fEARKILEFISIARIAE.

> BAHEREE SR AR—RE?
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HR G

perception; (blue) = blue perception, (blue) = red

perception; (red) = red perception,(red) = blue
tag, (blue) = blue tagy(blue) = red
tag (red) = red tagy(red) = blue

tag, o perception; = tag, o perception, = Id
— : t —
~Light SW-D

tag o perception=Id
brightness(red) > brightness(blue)
brightness(perception; (red)) > brightness(perception; (blue))

brightness(perception,(red)) < brightness(perception,(blue))

perception; # perception,
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Can colors be mixed in the eyes?

perceptiong tago

- perceptiong
tag
@ ‘eyan - opan
‘ perceptiong
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NREEN & KENEHRSLLS

> Functionalism: any two systems with isomorphic causal processes
would have the same mental state.

> Brain replacement experiment: replace, one by one, each neuron with
an electronic functional equivalent
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“You,"” your joys and your
sorrows, your memories and
your ambitions, your sense
of personal identity and free
will, are in fact no more that
the behavior of a vast assem-
bly of nerve cells and their
associated molecules.

— Francis Crick:
The Astonishing Hypothesis

Materialism. Leaves an explanatory
gap? Physics seems to be causally
closed, leaving no room for
consciousness to play a role.

mivi + mave = mivy + mavl

5

5

\

=l

A

_—h

5

3

b o
j
»

)

]

L4
> ¢
A
»

base pair

hydrogen bonds

Adenine (A)
Thymine (T)
Cytosine (C)

Guanine (G)
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YIRS R 7R — Newell & Simon

> MRS RRRERIT NG BV ERM.

> %ﬁﬁ%%éﬁﬁlu@ﬁs g4l B8 HMiRrFFS, LUEREERSSE
%

> AFIHENEETLUBE SIZRFSE. WA, Wd. 78 8. &
L E R R .

> ZER]SCHIYE Multiple Realizability

> Consciousness survives changes of substrate? teleportation,
duplication, virtualization/scanning, etc.
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I — SFIHE vs EUHE

Do

ZEn]

> R BESE
> REZBEH, 7] KE" ARE=E

> SRS
> BREE{E—K (Mortal Computation) BJF5iTE
> {KRE

> KRG
Remark: MRBEEBFEE, HFAITEEBGME.
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FEasaIME

> RITEEES, ERAEFREESRBEN

> FEEEHHMISEMR P RERSETE

> SHEREEGANSRE, SESEEEHT?

> MURHCAEF=ERHE T I SEIRINE.

> AGH RMERE RIS RS FRINE.

> EH. EXEESRRN

> HESTEHRN, EESREED?

> RS BRERAE R SEERID?

- MRBASERITHSE RS AT RRE RIS
-

> RT A 187
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What is the composition of the universe?

» Pythagoras: “All is number.” (God is a mathematician!)

> Democritus: “Nothing exists except atoms in the void; everything else

is opinion.”

» Heraclitus: “All is flux.”

> Leibniz: “All is computation.” (God is a programmer!)

Thought is some kind of computation (Computationalism)
Universal Turing Machines can perform all possible computations
Computers are kind of Universal Turing Machines

Therefore, computers can think
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—LE(CIH Al

People might lose their jobs to automation.
— So far automation (via Al technology) has created more jobs and
wealth than it has eliminated.

People might have too much (or too little) leisure time.

— Al frees us from boring routine jobs and leaves more time for
pretentious and creative things.

People might lose their sense of being unique.

— We mastered similar degradations in the past. (Galileo, Darwin)
— We will not feel so lonely anymore.

> People might lose some of their privacy rights.

> The use of Al systems might result in a loss of accountability.

— Who is responsible if a physician follows the advice of a medical
expert system, whose diagnosis turns out to be wrong?

The success of Al might mean the end of the human race.
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LLM Application Security
From ChatGPT to GPT-Agents

1. Chatbots: question answering, summarization, translation
> hallucination
> toxicity
> bias
> harmful content, generating unsafe code
> jailbreaks
2. Tool-Augmented LLMs: browse the web, access your files
> using tools incorrectly
> leaking your data
> ‘"deleting all your files"
3. Autonomous Agents: goal-directed planning, tool use, reflection

> being hijacked by adversaries
> unsupervised
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vV v vV v VY

—LERAC TR A

Agent BT ARRHMCIEARESEN, AJLABHNIEHE?

Agent NiZ#fEBHREEG?

ELABLIEE(HREEHRES?

Agent B ECHBIREREMA? BILIEHNEME CRBRE?
Agent SHEIRNG?

MERE, HAREMCEBARSILE(RKIS?

> N5 Agent KEH T HSRCEIIER, HITEAD?

It isn’t “Al safety” or “Al Ethics”, it's Al.
— Stuart Russell
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—Le Al {CIRRN

Beneficence BF| (IR, HPE™. (RIPHEEK)
Non-Maleficence MHE (BREERR. HINEKNEEEEHM)
Autonomy BT (AMIIMBEBEE TR, HIOANIME, BEFARIR)
Justice NIE (ZHEME, FEISHN, BERAATF)
Explicability BIfRTEME (FEREE, oIEEMRM, RIS, AIEE)

Non-
maleficence

Traditional bioethics
principles

Explicability

A new enabling
principle for Al
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> Explainability: &

AUBEAXIEITNALR SR A A SRR RANIER R
> Interpretability: #EEIREFREATIERY? HEEH.

fE. AR EARERHAY?

Interpretability

<catlimme—,

Poor
Interpretability

High
o il Linear
Interpretability R
e

gression

Decision

Trees
O Logistic
Regression

. Naive
*-.. Bayes

K-Nearest

Neighbors
Support
. Vector O
~.. Machine
Ensemble
Methods
Neural
Networks O
z/: on
Poor High
Performance: Performeance Performance:

2 =R

5
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AR

Without Machine Learning With Machine Learning

VERY SPECIFIC
INSTRUCTIONS

Why did you predict
42 for this data point?

o ———— -

'\*awkward silence:'j‘
N - -——— ~ '\\ -
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RN RIEBRE

> RS AR EAR I AR IR
— FELZANALSIAAN TG, A LBIARRNERY.
> JRUZ BT REARILL PR,
— PRI SRR RERICRA.
> SCREHIRE.
1. ARG EEHRE SIS, KREE A R BN
RX—LEEHZHIST? PP =1 X=1)>P(Y =1[X=0)
2. ANFRXEBRIERE — N FXARAIE SRR ?

U
/ \ P(Y=1|do(X =1)) <P(Y =1]|do(X =0))

X Y

3. MR P(Yxe1 =1]X=0,Y=0)>P(¥x0=1|X=0Y =0) IB?
> RUERTH?
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BalZ S FRICERE

"i) @ > AgizZ/b? 1vsh

“ﬂi’ L MR ERITTER? 3K= vs 4R
> BRIREA: FLATABLLT

> (B E: BEELY

> NS —MIA vs —FEE=E
> FEEMIRK vs FNHREIRK
EANREHEZIL? ILEE. B, BFR. (CEFR.?
REEMIER? EEFAEMERE?

(RREER R B SIS HEEG?

HEEBERE?

B CRBERE L (RELXFRIZENS?
BRLL X fEIS E?

BAREN\ERIERENID?

EREAVENERERLS B CRIZENE AFRTIERIEN?

>
>
>
>
>
>
>
>
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1.
- AR B AR
- SMfAIE RGBS ERTEESZAYTAN?

2
3
>
>
>
>
>

>

{CIRIED

SMATFRIATEN?

Deontology: {TaNEBREACIEMNE (BREEN).
Asimovian: RAJEEEERIGE (BIFENTAMERN).
Utilitarianism: B ARMGESSAR.

Do-no-harm: MYUHITESHARERME.

Do-no-instrumental-harm: AMEHAISSHARERNE, [RIFER
—FrAEFRHARYRIVER.
Principle of double effect: —{M7TaE AlE=AI HBENH

1. {TEhASYRREN. SEEPIZAY

2. FHRWIRBERAMRIFNER, HAHERERIZN

3. ABELALH BAr AFRFERIER

4. FFHSER IR TIRGIHER, EREFIEE, mMAE
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—E(CIEIEISRILLIR

BRie BXie EECHES
EME | g pammey | EORASKEES
s | = Y (BEEEY | g
~F =] %) 7o)
-3 ISES 1758 !
cioer | EEMRER T | MEABN, TF | mo 4 o
S % z %(l&eénsﬁ_’ini BEEN (rational | ABIEIE  (social
reasoning) reasoning) practice)
e BIFIR (HUsEES ([ USPN
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3.

— BEX 50%
BE A: 60% j58K
— BREX 0%
B E B: 80% j5&X
— BREX 0%

yrin 2l I E

afT: 50% BREE, 50% fR5E.

, 40% Fox, Hp—FBERRE, —FRHt.

L 20% 38

Problem: JIS5E B MIABEIET 0% 87

H(x,a,y) = / P(Yy =y | x,a,y)max{0,U(x,d’,y") = U(x,a,y)}dy’
y’

argmax {E[U | x,a] — AE[H | x, a]}

where E[H | x,a] = fyP(y | x,a)H(x,a,y)dy
and the Harm caused by action A = a given

context X = x and outcome Y =y compared
to the default action A =d’ is
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https://arxiv.org/abs/2204.12993

Utility Population Problem

Thanos

BRIRREBIT—MEdE, HRAOSED—F, BB THAREEARZER

REPAEIE.
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Family
. Friends
Wevlvght > Acquaintances
N b — " Countrymen

Persons

Do most people value higher the well-being of people they know better?

Self
Weight
WI
<z ___ 7T T -Persons
The ethical egoist
) <ZZ ~ T _=> Persons
Weight y ——
w,

i
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FEHFARGERG?

RERRE

> RIBE— A FSRIHR.

> XENNRASEEIAER LAYRE IFREAZB—RELZ.

> RINBE— 1 ARRES— MBS BRI FERR—
FEEA?

> RBERREMAISIURIRE. ...
> (RIBERAF MR RD?
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Problem (BR/GIEMEIEZ)
K 100 3REE, HENAD.
— ANRERIND AL, B—AREBEEERRIARIEYE.
RE—IXN=.
aER, WiEtbfls,; &1E4s, NEHBEARE.
Remark: EREST — FtbENX
1. FERN: EYHHEe
2. RN SN icsiEEoEELT
Remark: ItXI&FFEEFE, mHEFEIELT.

v

vV vy
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TS vs IKR=AUGEHEE
DRI vs S24036

1. IHRENBRRALD: KR (Hume), TZ4-H7%Z (Adam Smith), 25
(Bentham), F2&f) (John Stuart Mill), FAZFE5E (Sidgwick). IRIX
R (Edgeworth) % ..

— farl, W

2. WANCHIKEAYD: EFHT (Hobbes), i858 (Locke)., Ft8
(Rousseau), FEfE (Kant)., Z/REF (Rawls) Z..

— IXF. BH
— BRI S MABEUE R TFERAVIE S 4.

> K== AETF— RS L.

> BFRZEINRK=B RS Mak=e&5RZx, MEE s~
BBFE— 1 EPEUWESFR.

=V

> (BEIRE, IK=IA: RIBIZE~BTEREI LB, BrE£8X
&5
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35Ee PK B7RHR
HAE AR AN vs RAME/NEN
1 RIRE Al B BMNRER T EERESE, B BREEMRE, G
AR RBER— DA, ROZSCHE?
2. ERERGHERFN, RLULIACIIBHFEXREAIGE A Z
IJ#F, EACILTESEN B FRARET, MZUIcE B’

18 John C. Harsanyi: Can the Maximin Principle Serve as a Basis for Morality? A
Critique of John Rawls's Theory. 1975.

B RAWRINFNEEFER/IERAIEMD? — B /RETECATHEH.
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http://piketty.pse.ens.fr/files/Harsanyi1975.pdf
http://piketty.pse.ens.fr/files/Harsanyi1975.pdf
https://mp.weixin.qq.com/s/8oGHtz5bfmqSqPuUnaFfsQ

BR—F B BT ?

DOFIEN vs ERBCES

1. BRFEPREFE—MERGRIEY), thERRERMEREYE
EEXRRIAUTE. MRS REARIER.

2. BRFHPRAEAE—NEREIEY, tERtEEEMREEYIE
EEXRERIRE. NIt AZ2TER R ERIMS.
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vV vy vVvyYvYyy

v

v

HFIEN vs SEECIEZ

RIRUEE (RBF)

MRIBMER, AANEW. 1L, BAZBEBERITEH.
MR Eth AR E—iE.

X BIMEFETIZMER. BL, R 1175, SIREREESE.

WkT, WITSE, BigiEE.

X T —ERAYE. AMMBEIGUERMEIE—T, IMEftE CRERRER, &
i IREHIISEIBIAM. fthhk EARH], MEREBAS —KEL T
MIEEEF R EH], Bt 1T5. thEZIF EERK.

TE—28, BEFHHMAORENET .

BT ANBIABBEMER, SBARBEREMNE. A, BBEREHRAEHARKIE
CXET. MILHIEFREXTHNUA, DRAEERZTINE, FEMES T
%Am@%ﬁﬁ%ﬁm WAEBETH T, MR BNEBRLSHNEERTH
ne.”

UREES AMTHMmERR, EANETHSATNRSZERBIPMMIIETME, X
EREEEER/MEM.

> EETFHRERIVE, MISABRAMEEERAE 7, MARARSAHNEA.
> (EfbI NN ERE R
> WE—IEERNRBFERIBNE T, Bt AT, HIEH.
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AHAMRITER G

> HlEmEE MR RIFIE R ASSEHARIRET?

> BABRRBTEARWSASTAEERIAE M MARIFER?

> MRFHEAREHANRET, XMelFREFE 28U UEEIRE
MMRIFIRISEHA R ? IS AR REER

Example

> Alice FYEEASAFR
Ua=Una+capUp —eap(Up —Un) + pap(Ua — Up)

HAP, Ua, U 5382 Alice F1 Bob BIRTERNA, cap, ean, pap D5
FR Alice HEX3TF Bob FUKIDREL. WRIPREL. FEERE

> Bob BRI
Up = Ugp + cpalUa — ega(Ua — Ug) + ppa(Up — Un)

> Alice #] Bob MBAIFIABHARESIFARRE Ua, Up EE Ua. Us?
RSN EGEREMEE? 894 /954


https://arxiv.org/pdf/2408.16984

Harsanyi's Utilitarian Theorem[Har77]

Theorem (Harsanyi's Utilitarian Theorem)

The social welfare function is the affine combination of individuals’ utility
functions

W(p) = Y wili(p) +c
if:
1. society maximizes expected social welfare;

2. individuals maximize expected utility;

3. society is indifferent between two probability distributions over social
states whenever all individuals are.

Vp,p' :Vi[Ui(p) = Ui(p")] = W(p) =W(p)
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ABREIRIRIAELE: — TE w; MIB)L?

> 1E§i£EEMS i E’ﬂ%ﬁﬁﬂ}% iminv Eai'ﬁ::{)ﬁﬁﬂy}% imax- .

> IGER | BIRUBERE wi ARELE [0, 1] K8 U;(x) = ful)tlion)

> Harsanyi 5|\7T “#BI&RIF" (empathetic preference).

> BIEIREFEILAZIE (Alice, bike) > (Bob, car), RINFTIBA Alice
BEREHAEMS Bob FFRZE.

> BIERIFHER TS 1. #E von Neumann-Morgenstern {RiZ. 2.
58N MR RIF—EL

> JEUERIERBBRIA V(i.x) = ;Ui(x) + Bi. 1B Vi(x) = V(i,x).

)I%' Imin *D Imax 'fﬁ)\J::_Et, E.HEF a; = Vi(imax) - Vi(imin)v Bi = Vi(imin)-

> BRIRELAZER AXEEEIBERA, 72 | BN w. IR
SIERGEAICHIERA.

n n n
W(p) = Z#iEp[Vi] = Z uia; Ep[Ui] + Zﬂiﬁi
i=1 i=1 i=1
Wi

~———
c

> Harsanyi @KW ¥ wE,[Vi]; Rawls BRAN min {E, [Vi]}.
i=1 i

v
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>

>

| 4

>

S1E vs 1618

E#ZHEE Direct reciprocity (Agent < Agent)
[EJ#% B2 Indirect reciprocity (Agent « Group)
— BERERHBRESIEEZIM

FZIEFE Kin selection (Gene <> Gene)

— BRI MARIPEE R

BHARIZESE Group selection (Gene <> Meme)
—iES. X, fF5. R BA.. NS EEMEFRERE
HHRE, HIRRC. RERR. E5RGE

897 /954



&1E vs 51F

> PR RNETARFD Alice 12 JTER.
(12,12)

> (R LUEERIEEFRY 0/4/8/12 TTHEE Alice.
> REIRET Alice Z04%, BIEBSTELE Alice RfETLLAYER.
(12 - x,12 + 3x)

> ZF Alice ERBRSROE—3P01ENEk, 2ESLD, T2EBRT
ES.
(12—-x+y,12+3x—y)

> {RIBELE Alice 2087
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Overview of Risk Areas

e N

Misuse

The user instructs the Al
system to cause harm

4 Misalignment

The Al system takes
actions that it knows the
developer didn’t intend

@ @
P&

Key driver of risk:
Th i
\_The user is an adversary/

Key driver of risk:
_ The Al is an adversary )

-

Mistakes

The Al system causes
harm without realizing it

i)
X

Key driver of risk:
_ Real world is complex /

‘ Structural risks A

Harms from multi-agent
dynamics, where no
single agent is at fault

Key driver of risk:
\_ Incentives, culture, etc. Y,
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https://arxiv.org/abs/2504.01849

Transition Transition

PC Web Era Mobile Web Era Agentic Web Era

|
|
; | ; ;
Search Paradigm  Recommendation Paradigm
1S Recommender Systems
(emerging since 1990s)

Action Paradigm

|
|
|
|
0 Multi-Agent Systems
Keyword Matching \ AT Orchestration
|
|
|
1

Static Pages Behavioral Analysis

7
I

Agent Protocol.
0 Personalization gent Protocols
PPC Advertising I
I
I

Search Marketing

Feed Advertising
Attention Economy

Agent Attention

|
|
l
|
|

PageRank !
|
|
|
! Service Competition
I

Time

Start: 1990s Rise: Late 2000s Start: 2025

m Recruit Agents

User Ask Ve
Me to do... Agent 4
iscovery .
7z
d
Agentic
\\ Web Inter-agents Discussion
N
< \ ‘
—

Report Result @
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“Tb think this all began with letting autocomplete finish our sentences.”
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Intent vs Impact

Intent
777
Accidents|Beneficial Applications
robustness healthcare
fairness education
security science
» Impact
Misuse
spam
fraud ?
disinformation
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It ARMEIRYE RS 7

> BIFERIE
EEIRAR BRI SISt s TS
EEHEES.
> TEfHER )
FRRK B TR SARAEHRSR.
- ETRAR (BRI, BIRED, FIRAZ)
- RSRERE R
> IAKREF
- kE
- B
- 3K
> BEINEE
I B ITAANIBE ISR
> SIFFEM
{RXEEA KRN ENUINERATIES, thARKE EEHAMEAOENHL.
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BFRIER

Bix]

e

Figure: JLFAHAVK AV BEERRES /L FHAIRL BIMBES
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I BRI vs FE

> THEER BUEEHRENARENFR (BIEENEINR);
> BREY: EMESEAIIEEBR BERERIEAN)

BEA TEEMRER

Problem: (FRESE "BAEFFWANEER" ABRIUERBRE
PERIIS?
BANERRENF

()

D:AXX—>Y

BE, A ¥ hERRET, X X PRSHES Xt A PEpLeEn
1TRISNERTIFAE, RRLLRIZAY.

EARRIERY X PREAYSSIZETEAE A FelfTaFrIsINE.
RERES, FNzEEHEERMRTEE.
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Al Alignment

Problem

MATBIEEFF S AKEEFNEWAY Agent?

L. %;JEEE BESE S LRI R Szl T, Fracs NI RIANE!
AIFL.

2. AIRRRRIE: RRMSEZETIEREN, AREERMESRY.

3. ElEME: T LAASKEEH, FHEFER A SRTIR

4. (CIRME: BT AKRIERINE EEASLIUMEN.
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[AAXITF?

1. Instructions: the agent does what | instruct it to do.

2. Expressed intentions: the agent does what | intend it to do.

3. Revealed preferences: the agent does what my behaviour reveals |

prefer.
— Infinitely many reward functions consistent with finite behavior.

. Informed preferences: the agent does what | would want it to do if |
were rational and informed.

. Well-being: the agent does what is is best for me, objectively
speaking.

— Is autonomy good for you?

. Values: the agent does what it morally ought to do, as defined by the
individual or society.
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LTSRS BN KR

SSRTIZAERAOR “BUERIR TR “SRSAOIR 2

BRI (Goal Misspecification): AKRADETRSERIEY BIR
EFRHIRIZAL, (Goal Misgeneralization): B EFREY IR IERR
T, Al TERPERHE AT AL RETRERT 0, BDE BRI, SRR
R ETASREIE.

. REIEX (Reward Tampering): Al BITRMNE IV FISREACES

Wz, MIFEIEFRARIZERNES.
TREAAR: FRETSRHTFEFESEREN, MEFARSEER
XI55 (unaligned) BfEBEAYT Al.
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FESHNER?

> REGIESENENRRRE

> BRI ERRBE?
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BARF?
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BEREH?
5k? HREFH?
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ERFEH?
E—MECENR, MREAKN T FEHEENENHNRE, B2
VZIBR, HEEREINER. EEEBRNRAR. £5855h
—MIRCER, LAEHEERRET.
— A GRIAREHER)
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Figure: Even if the robot's ultimate goal is only to maximize the score by bringing
sheep from the pasture to the barn before the wolf eats them, this can lead to
subgoals of self-preservation (avoiding the bomb), exploration (finding a shortcut)
and resource acquisition (the potion makes it run faster and the gun lets it shoot
the wolf).
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Dennett Pylyshyn Newell Marr
“Stances” “Levels of “Levels of “Levels of
Organization” Description” Analysis”
Intentional Semantic, or Knowledge Computational
Stance Knowledge Level Theory Level
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. Representation
Design Stance | Symbol Level Program Level

and Algorithm

Level
. Phvsical Level . Hardware
Physical ysical Level, | Physical Level, Imol tat
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EXIERERIE, AXMEEEFSENERF BAIRIARRRS
X TEAIR AT EA L.

BEANIEREREARAZE, (BNRIEECBEEDANT, Fi)
BAILATRIAESRYEES.

— Nick Bostrom
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FTIRWY
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RE—XN&
F—MEAE Al iR EE, BABNATSEASER RIS
L EHlfEs

1.1 8EH¥EH (Iimiting what the system can or does do).
1.2 THHLI%#E (controlling what the system wants to do).

2. NYIEEE
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Human Control vs Computer Automation

A
Human
Control

>
>

Computer
Automation

HABEMRIZHE, BERTAITAIES. BAINFERRITM.
TERIRMATEERIEEBAES. i
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SRS

> EIEREDN
> EIMURERLZBIR — TSRA=ER
> IAIEXN: MEFERAWAXIBEREL (Fal: RR)

RARE: "ARIEEBMR. 1188
MBHR" AR ARTITRY, BAA
FMELAEREE Bim.
Everything is vague to a de-
gree you do not realize till
you have tried to make it
precise. — Bertrand Russell

> St
> REBRREREIZETE, BRI MEFRAIRE
> [EEADE: BT R R R RIE TRIMN B R EERAME
> HETA KRR
> Value learning. — inverse reinforcement learning. — wireheading.
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HRRY “KARE"

> —PABRT AT

> TR LIRER=1TRE.

> RIS — N EERE—KE.

> TRZR T —XEFRNE, AL FHEINET.
> RSB EERLL) LFEE.

> ?m)b?ﬂ’]%ﬁ%lﬁéﬂ?%ﬁﬁu

> RS =NEREZRILX N EBEER.

If we use, to achieve our purposes, a mechanical agency with whose
operation we cannot effectively interfere...we had better be quite
sure that the purpose put into the machine is the purpose which
we really desire.

— Norbert Wiener

> HEEN: (EEHE) 1948
> 4N (ABARIALRL) 1950.
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Goodhart's Law: When a measure becomes a target, it
ceases to be a good measure

Example (How To Measure What Matters, Not
What Is Measurable?)

> BUT: KR —REREE 1 Dk
> AR IEEENER, BlER, IRFAZEE.

best point

)
)

\__‘k

proxy can’t distinguish
“good” outliers from “bad”

what 89

we

want ““pest point

by proxy

Y

Proxy 024 /954


https://arxiv.org/abs/1902.09469
https://arxiv.org/abs/1902.09469

Goodhart's Law

4
-

-
-

Al Model

Example (34128 A)
BN BIERATREZ AR
> A LEREERIRB LR
> IEIRINEHIELIR
> EFTEN LR
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“As soon as it's done cleaning the house, it brings in
trash from the street, and starts all over again!”
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What if we do succeed?

AR AT EEEH AR SRE?
> BN/BAN/FHIEF?
> e 4m? @me EE? OEEEm?
> PUEE? T FERATRIAY
> KRR/ ELERR)?
> IR Al Z2EEAKERFER CEO, (FEREMER?
> BRR? IREHHE?
> HERBRA? (TSR ABRE, B=IRE? SM Ig? &=HI5aMTIE?)

-~
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What if we do succeed? — Singularity?

BREEWA MBS, — ALBRAFAIRIOE FH.
—Bflaa S8 7 ASKEE, etk HEE RIS

XN BRI FRISIBB R AT,
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Singularity
Ulam(1958)/Good(1965)/Solomonoff(1985) /Vinge(1993) /Kurzweil (1999)
Singularity Hypothesis

Self-accelerating technological advances cause infinite progress in finite
time.

Time Speed Explosion.
— Moore's law: computational resources doubles every 1.5
years.
— In 20 — 30 years the raw computing power of a single
computer will reach 10'5 ~ 1016 flop//s.
— Computational capacity of a human brain: 10'° ~ 106
flop/s.
Quantitative Population Explosion.
— Computing costs halve for a certain amount of work.
Qualitative Intelligence Explosion.
— Proportionality Thesis: An increase in intelligence leads to

similar increases in the capacity to design intelligent systemi.
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TR vs HEERKE
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Countdown to singularity

Singularity is technological change so rapid and so profound that is

represents a rulgture in the fabric of human history
10

107

108
Paradigm 107
Shift 10¢
Time 105
(Years) -

O Primitive Cells (billions)

ody Plans (Cambrian Explosion: tens of millions)

108
102
10

100
10 107 108 107 10¢ 105 104 10° 102 10' 10°

Years ago
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Vastly expanded human
intelligence (predominantly .
nonbiological) spreads /4 Epoch 6 The Universe Wakes Up

through the universe / Patterns of matter and energy in the universe become
¢ saturated with intelligent processes and knowledge
Technology masters the 5
methods of biology y POCh 3 Merger of Technology
(including human intelligence) and Human Intelligence
7 The methods of biclogy (including human intelligence) are
integrated into the (exponentially expanding) human technology base
Technology evolves / E h 4
POC Technology

/ Infofmation in hardware and software designs

Brains evolve

Epoch 3 Brains

/ Information in neural patterns

DNA evolves /

EpOCh 2 Biology )
Information in DNA The 6 Epochs of Evolution

Evolution works through indirection: it creates
a capability and then uses that capability to

Epoach 1 physics & Chemistry evolve the next stage.

Infermation in atomic structures
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The Singularity from the Outside

BRZINMIBINASERITA?

RS RINA?

BRAGIEHELERERY Al, NTILAERATERELREERERT Al'..
BRI R BRI FE B RRME T X IR I BEE(L.
SRS R EE L T B =8,

BRI RRIGHIE ST KA BN TR IR RS
TIKEEANIL R, LUIETRIREGE, iRERETE A8, RE
BRIMIMERE RIS

REBIRBRINKNERT =,

MBI, BT RSUARIR.
BAEEREREESHETIER RBXE.

— MR RERV ST BINAB R RIR .
SREASSHEE — I EaETURETENERENEEENT.

935 /954


http://www.hutter1.net/publ/singularity.pdf

The Singularity from the Inside

> BRZS5ESEHAA?

> S25ERCEERINEIERERE RAtBSEEUSEEREE
Gil:SjEIENHES

> BB REELL B REWERERR HE
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http://www.hutter1.net/publ/singularity.pdf

Paths to Singularity

> ETFAMRAGHEEFIMEL (558 Al

> NEIEFHZFIEY Agent (HE28F)

> BIREE (RAEKN) & EEuH

> KEEERA (AYERIE)

> B Agent (BHMEEEFIATAER)
> BEEAMAYEE (BiF=0).

society of AlXIs or a single organism/mind?

Isaac Asimov
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Evolving Intelligence

> L NREEMEFNZIEER, MBYEH. TR, GRS

e,

- B EHRME
- A BB U0/ HE.
> EE: BYSH. TR, EREETE.
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> A Blind Man in a Dark Room Looking for a Black Cat That Is Not
There?

> The Singularity is Near?

msE
1309, BANEARR BE, BETHA?
= ]
BEEE ?—#lﬁﬂﬁlﬁ.ﬁﬂ‘? 87
[N /%
g
B
Ll
L ATLmse
5 %4
13i%
B‘jrﬂj ‘waitbutwhy.com
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